A Numerical Algorithm for a Class of BSDE Via Branching Process

We generalize the algorithm for semi-linear parabolic PDEs in Henry-Labordere to the non-Markovian case for a class of Backward SDEs (BSDEs). By simulating the branching process, the algorithm does not need any backward regression. To prove that the numerical algorithm converges to the solution of BSDEs, we use the notion of viscosity solution of path dependent PDEs introduced by Ekren, Keller, Touzi and Zhang and extended in Ekren, Touzi and Zhang.

[1]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[2]  A. Etheridge,et al.  An introduction to superprocesses , 2000 .

[3]  Zhenjie Ren Viscosity Solutions of Fully Nonlinear Elliptic Path Dependent PDEs , 2014, 1401.5210.

[4]  R. Handel,et al.  Constructing Sublinear Expectations on Path Space , 2012, 1205.2415.

[5]  Anja Sturm,et al.  Stochastic Integration and Differential Equations. Second Edition. , 2005 .

[6]  Sharp Conditions for Nonexplosions and Explosions in Markov Jump Processes , 1995 .

[7]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[8]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[9]  E. B. Dynkin,et al.  Superdiffusions and positive solutions of non-linear partial differential equations , 2004 .

[10]  Mikko Alava,et al.  Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.

[11]  Nizar Touzi,et al.  On viscosity solutions of path dependent PDEs , 2011, 1109.5971.

[12]  Bruno Dupire,et al.  Functional Itô Calculus , 2009 .

[13]  H. McKean Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov , 1975 .

[14]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[15]  Michael Mascagni,et al.  Monte Carlo solution of Cauchy problem for a nonlinear parabolic equation , 2010, Math. Comput. Simul..

[16]  Shinzo Watanabe,et al.  On the branching process for Brownian particles with an absorbing boundary , 1965 .

[17]  T. Sideris Ordinary Differential Equations and Dynamical Systems , 2013 .

[18]  Liu Qie-gen Adapted solutions of backward stochastic differential equations driven by general martingale under non-Lipschitz condition , 2013 .

[19]  P. Protter Stochastic integration and differential equations , 1990 .

[20]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[21]  D. Talay,et al.  Simulation stochastique et méthodes de Monte-Carlo , 2011 .