Incompatibility and a simple gradient theory of plasticity

In the continuum theory, at finite strains the crystal lattice is assumed to distort only elastically during plastic flow, while generally the elastic distortion itself is not compatible with a single-valued displacement field. Lattice incompatibility is characterized by a certain skew-symmetry property of the gradient of the elastic deformation field, and this measure can play a natural role in nonlocal theories of plasticity. A simple constitutive proposal is discussed where incompatibility only enters the instantaneous hardening relations. As a result, the incremental boundary value problem for rate-independent and rate-dependent behaviors has a classical structure and rather straightforward modifications of standard finite element programs can be utilized. Two examples are presented in this paper: one for size-scale effects in the torsion of thin wires in the setting of an isotropic J2 flow theory and the other for hardening of microstructures containing small particles embedded in a single crystal matrix.

[1]  A. Pineau,et al.  IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials : proceedings of the IUTAM symposium held in Sèvres, Paris, France, 29 August - 1 September 1995 , 1996 .

[2]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[3]  R. Asaro,et al.  An experimental study of shear localization in aluminum-copper single crystals , 1981 .

[4]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[5]  K. S. Havner,et al.  Finite Plastic Deformation of Crystalline Solids , 1992 .

[6]  Amit Acharya,et al.  Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .

[7]  Campbell Laird,et al.  Size effects of dislocation patterning in fatigued metals , 1995 .

[8]  Y. Milman,et al.  Microindentations on W and Mo oriented single crystals: An STM study , 1993 .

[9]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[10]  John L. Bassani,et al.  Plastic flow of crystals , 1993 .

[11]  M. Ashby,et al.  Dispersion hardening of copper single crystals , 1966 .

[12]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[13]  J. Gilman,et al.  Structure and polygonization of bent zinc monocrystals , 1955 .

[14]  John W. Hutchinson,et al.  The mechanics of size-dependent indentation , 1998 .

[15]  John L. Bassani,et al.  Latent hardening in single crystals. II. Analytical characterization and predictions , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[17]  Amit Acharya,et al.  On Non-Local Flow Theories that Preserve the Classical Structure of Incremental Boundary Value Problems , 1996 .

[18]  K. S. Havner,et al.  Perspectives in the mechanics of elastoplastic crystals , 1982 .

[19]  J. Hutchinson Plasticity at the micron scale , 2000 .

[20]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[21]  A. Kelly,et al.  Strengthening methods in crystals , 1971 .

[22]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[23]  J. Hutchinson,et al.  STEADY-STATE CRACK GROWTH AND WORK OF FRACTURE FOR SOLIDS CHARACTERIZED BY STRAIN GRADIENT PLASTICITY , 1997 .

[24]  A. Cemal Eringen,et al.  Mechanics of continua , 1967 .

[25]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  R. Bullough,et al.  Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  R. Cahn,et al.  A study of primary and conjugate slip in crystals of alpha-brass , 1955 .

[28]  van der Erik Giessen,et al.  COMPARISON OF DISCRETE DISLOCATION AND CONTINUUM PLASTICITY PREDICTIONS FOR A COMPOSITE MATERIAL , 1997 .

[29]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[30]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[31]  H. Dai Geometrically-necessary dislocation density in continuum plasticity theory, FEM implementation and applications , 1997 .

[32]  A. Evans,et al.  Stress evolution in passivated thin films of Cu on silica substrates , 1998 .

[33]  Norman A. Fleck,et al.  Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity , 2001 .

[34]  R. Hill A general theory of uniqueness and stability in elastic-plastic solids , 1958 .

[35]  J. Nye Some geometrical relations in dislocated crystals , 1953 .

[36]  Y. Dafalias The Plastic Spin , 1985 .

[37]  A. Needleman,et al.  Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions , 2001 .

[38]  A. Acharya,et al.  Incompatibility and crystal plasticity , 1995 .

[39]  R. Asaro,et al.  Micromechanics of Crystals and Polycrystals , 1983 .

[40]  Rodney Hill,et al.  Aspects of Invariance in Solid Mechanics , 1979 .

[41]  P. L. Pratt,et al.  Plastic Deformation and Work-Hardening in NaCl , 1964 .

[42]  John W. Hutchinson,et al.  Crack tip fields in strain gradient plasticity , 1996 .

[43]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[44]  Rodney Hill,et al.  Some basic principles in the mechanics of solids without a natural time , 1959 .

[45]  F. Nabarro,et al.  Dislocations in solids , 1979 .