Microbial Processing of Metal Sulfides

Preface Section I - Fundamentals, microorganisms and mechanisms Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification Axel Schippers Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation Thore Rodwerder and Wolfgang Sand Electrochemical techniques used to study bacterial-metal sulfides interactions Denise Bevilaqua, Heloisa A. Acciari, Assis V. Benedetti and Oswaldo Garcia Jr Electrochemical mechanism of leaching. Influence of the presence of catalytic ions and bacteria Antonio Ballester, Maria Luisa Blazquez, Felisa Gonzalez and Jesus A. Munoz Recovery of zinc, nickel, cobalt and other metals by bioleaching Marisa R. Viera, Cristina M. Pogliani and Edgardo R. Donati Bioleaching of metals in neutral and slightly alkaline environment Aleksandra Sklodowska and Renata Matlakowska Section II - Bioreactors and Bioheaps Bioleaching of sulfide minerals in continuous stirred tanks Dominique Henri Roger Morin Bioreactor design fundamentals and their application to gold mining Fernando Acevedo and Juan Carlos Gentina Air-lift reactors: characterization and applications in biohydrometallurgy Alejandra Giaveno, Laura Lavalle, Patricia Chiacchiarini and Edgardo R. Donati Principles, mechanisms and dynamics of chalcocite heap bioleaching Jochen Petersen and David G. Dixon Section III - Genetics and Molecular Biology The use of bioinformatics and genome biology to advance our understanding of bioleaching microorganisms Raquel Quatrini, Jorge Valdes, Eugenia Jedlicki and David S. Holmes Proteomics and metaproteomics applied to biomining microorganisms Carlos A. Jerez Cell-cell communication in bacteria: A promising new approach to improve bioleaching efficiency? Susana Valenzuela,Alvaro Banderas, Carlos A. Jerez and Nicolas Guiliani Section IV - Other Applications Bioflotation and bioflocculation of relevance to minerals Bioprocessing K. Hanumantha Rao and S. Subramanian Desulphurization of gaseous emissions containing hydrogen sulfide Jose Manuel Gomez and Domingo Cantero Index

[1]  Fernando Acevedo,et al.  Optimisation of the solids suspension conditions in a continuous stirred tank reactor for the biooxidation of refractory gold concentrates , 2003 .

[2]  G. Ferroni,et al.  The chemolithotrophic bacterium Thiobacillus ferrooxidans , 1994 .

[3]  K. Sublette,et al.  Oxidation of hydrogen sulfide by Thiobacillus denitrificans: Desulfurization of natural gas , 1987, Biotechnology and bioengineering.

[4]  Michel Fick,et al.  Models of bacterial leaching , 1995 .

[5]  I. Suzuki Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions , 1999 .

[6]  C. Jerez,et al.  Identification and characterization of GroEL and DnaK homologues in Thiobacillus ferrooxidans. , 1992, FEMS microbiology letters.

[7]  R. F. Unz,et al.  Fixed film biokinetics of ferrous iron oxidation , 1981 .

[8]  S. Payne,et al.  Detection, isolation, and characterization of siderophores. , 1994, Methods in enzymology.

[9]  M. Zilli,et al.  Biotechnological H2S gas treatment with Thiobacillus ferrooxidans , 1996 .

[10]  C L Cooney,et al.  Measurement of heat evolution and correlation with oxygen consumption during microbial growth , 1969, Biotechnology and bioengineering.

[11]  J. Banfield,et al.  Microbial oxidation of pyrite; experiments using microorganisms from an extreme acidic environment , 1998 .

[12]  E. Donati,et al.  Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation , 2000 .

[13]  P. Bos,et al.  Energy Transduction by Anaerobic Ferric Iron Respiration in Thiobacillus ferrooxidans , 1991, Applied and environmental microbiology.

[14]  F. Crundwell,et al.  Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions , 1999, Applied and Environmental Microbiology.

[15]  W. V. D. Merwe,et al.  The application of the GeoBiotics GEOCOAT® biooxidation technology for the treatment of sphalerite at Kumba resources’ Rosh Pinah mine , 2002 .

[16]  D. Beratan,et al.  High and low resolution theories of protein electron transfer , 1997, JBIC Journal of Biological Inorganic Chemistry.

[17]  Francesco Vegliò,et al.  Batch and semi-continuous tests in the bioleaching of manganiferous minerals by heterotrophic mixed microorganisms , 1997 .

[18]  S. Ndlovu,et al.  The influence of crystal orientation on the bacterial dissolution of pyrite , 2005 .

[19]  R. Blake,et al.  Enzymes of aerobic respiration on iron. , 1993, FEMS microbiology reviews.

[20]  R. N. Kar,et al.  Studies on reaction mechanism of bioleaching of manganese ore , 2003 .

[21]  P. Lens,et al.  The biological sulfur cycle , 2000 .

[22]  H. Tributsch,et al.  Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite , 1988, Archives of Microbiology.

[23]  H. Nakazawa,et al.  Effect of silver chloride on the bioleaching of chalcopyrite concentrate , 2000 .

[24]  M. Sampson,et al.  Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides , 2000 .

[25]  G. Silva,et al.  Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena , 2003 .

[26]  Peter A. Spencer,et al.  Influence of bacterial culture selection on the operation of a plant treating refractory gold ore , 2001 .

[27]  J. Bigham,et al.  Sphalerite oxidation by Thiobacillus fertooxidans and Thiobacillus thiooxidans , 1995 .

[28]  J. Merwe,et al.  Testing the ability of a low grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching , 2005 .

[29]  K. Bosecker,et al.  Bioleaching: metal solubilization by microorganisms , 1997 .

[30]  R. Wan,et al.  The electrochemical behavior of a semiconducting natural pyrite in the presence of bacteria , 1991 .

[31]  Henry A. Schnell,et al.  Bioleaching of Copper , 1997 .

[32]  F. Soyer,et al.  A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans. , 1999, Journal of biotechnology.

[33]  K. Timmis,et al.  Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. , 2005, Environmental microbiology.

[34]  P. Singer,et al.  Acidic Mine Drainage: The Rate-Determining Step , 1970, Science.

[35]  W. Sand,et al.  Direct versus indirect bioleaching , 1999 .

[36]  D. Rawlings Mesophilic, Autotrophic Bioleaching Bacteria: Description, Physiology and Role , 1997 .

[37]  E. García,et al.  Cloning and characterization of Thiobacillus ferrooxidans genes involved in sulfur assimilation , 1989 .

[38]  D. Rawlings,et al.  Heavy metal mining using microbes. , 2002, Annual review of microbiology.

[39]  L. Nikolov,et al.  Experimental study of the inverse fluidized bed biofilm reactor , 1987 .

[40]  D. Holmes,et al.  A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. , 2005, Biological research.

[41]  Torma Ae Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. , 1971 .

[42]  J. Silverstein,et al.  Influence of heterotrophic microbial growth on biological oxidation of pyrite. , 2002, Environmental science & technology.

[43]  F. Mansfeld,et al.  Evaluation of corrosion protection by polymer coatings using electrochemical impedance spectroscopy and noise analysis , 1998 .

[44]  J. Pronk,et al.  Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. , 1990 .

[45]  Felipe A. Veloso,et al.  Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans , 2006 .

[46]  D. Nordstrom,et al.  Initiation of aqueous pyrite oxidation by dissolved oxygen and by ferric iron , 1987 .

[47]  F. Huet,et al.  Drift Removal Procedures in the Analysis of Electrochemical Noise , 2002 .

[48]  Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. , 1995, FEMS microbiology reviews.

[49]  F. Acevedo The use of reactors in biomining processes , 2000 .

[50]  V. Neale,et al.  Mintek-BacTech's bacterial-oxidation technology for refractory gold concentrates : Beaconsfield and beyond , 2000 .

[51]  M. E. Clark,et al.  Biotechnology in minerals processing: Technological breakthroughs creating value , 2006 .

[52]  D. Johnson,et al.  Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures , 1999, Applied and Environmental Microbiology.

[53]  H. Flemming,et al.  Relevance of microbial extracellular polymeric substances (EPSs)--Part I: Structural and ecological aspects. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[54]  G. Rossi,et al.  The design of bioreactors , 2001 .

[55]  O. Tuovinen,et al.  Sorption of Thiobacillus ferrooxidans to particulate material. , 1983, Biotechnology and bioengineering.

[56]  E. Casamayor,et al.  Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap , 2005 .

[57]  C. Baker-Austin,et al.  Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. , 2005, Microbiology.

[58]  A. Stuchebrukhov,et al.  DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH(-) to DNA thymine dimer. , 2001, Journal of theoretical biology.

[59]  Eric Forssberg,et al.  BioMinE : integrated project for the development of biotechnology for metal-bearing materials in Europe , 2006 .

[60]  H. Ehrlich Past, present and future of biohydrometallurgy , 2001 .

[61]  K. Riet,et al.  Review of Measuring Methods and Results in Nonviscous Gas-Liquid Mass Transfer in Stirred Vessels , 1979 .

[62]  F. Crundwell,et al.  The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potentials , 1996 .

[63]  F. Mansfeld,et al.  Analysis of electrochemical noise data for a passive system in the frequency domain , 1998 .

[64]  Jillian F. Banfield,et al.  Community Proteomics of a Natural Microbial Biofilm , 2005 .

[65]  In S. Kim,et al.  Microbial removal of uranium in uranium-bearing black shale. , 2005, Chemosphere.

[66]  J. Markoš,et al.  Scale influence on the hydrodynamics of an internal loop airlift reactor , 2004 .

[67]  J. Pizarro,et al.  Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation , 1996, Applied and environmental microbiology.

[68]  S. A. Miller,et al.  Performance of Agitated Gas-Liquid Contactors , 1944 .

[69]  H. Deveci Effect of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors , 2004 .

[70]  H. Tributsch,et al.  Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite. , 2004, FEMS microbiology ecology.

[71]  S. Oszczepalski,et al.  Origin of the Kupferschiefer polymetallic mineralization in Poland , 1999 .

[72]  T. Kasama,et al.  The effect of microorganisms on Fe precipitation rates at neutral pH , 2001 .

[73]  K. Cho,et al.  Degradation of hydrogen sulfide by Xanthomonas sp. strain DY44 isolated from peat , 1992, Applied and environmental microbiology.

[74]  R. Gadre,et al.  Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. , 1989, Biotechnology and bioengineering.

[75]  M Peleg,et al.  Modeling microbial populations with the original and modified versions of the continuous and discrete logistic equations. , 1997, Critical reviews in food science and nutrition.

[76]  I. González,et al.  The use of carbon paste electrodes with non-conducting binder for the study of minerals: Chalcopyrite , 1995 .

[77]  Devayani R. Tipre,et al.  Bioleaching process for Cu–Pb–Zn bulk concentrate at high pulp density , 2004 .

[78]  Y. Konishi,et al.  Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi , 1995, Biotechnology and bioengineering.

[79]  J. Costerton,et al.  Biofilms as complex differentiated communities. , 2002, Annual review of microbiology.

[80]  Jo Handelsman,et al.  Biotechnological prospects from metagenomics. , 2003, Current opinion in biotechnology.

[81]  G. Luther Pyrite oxidation and reduction - Molecular orbital theory considerations. [for geochemical redox processes] , 1987 .

[82]  K. Mahmoud,et al.  Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). , 2005, Journal of microbiological methods.

[83]  F. Mansfeld,et al.  Analysis of electrochemical impedance and noise data for polymer coated metals , 1997 .

[84]  David K. Gosser,et al.  Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms , 1993 .

[85]  F. Bouquet,et al.  BROGIM®: A new three-phase mixing system testwork and scale-up , 2006 .

[86]  A. Schippers,et al.  Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils , 2004 .

[87]  G. Hansford,et al.  Factors affecting bio‐oxidation of sulfide minerals at high concentrations of solids: A review , 1993, Biotechnology and bioengineering.

[88]  F. Pooley,et al.  The distribution and influence of silver in pyrite bacterial leaching systems , 1996 .

[89]  K. Temple,et al.  THE AUTOTROPHIC OXIDATION OF IRON BY A NEW BACTERIUM: THIOBACILLUS FERROOXIDANS , 1951, Journal of bacteriology.

[90]  M. X Liao,et al.  Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach , 2004 .

[91]  Jens Nielsen,et al.  Improvement of Galactose Uptake in Saccharomyces cerevisiae through Overexpression of Phosphoglucomutase: Example of Transcript Analysis as a Tool in Inverse Metabolic Engineering , 2005, Applied and Environmental Microbiology.

[92]  David W. Dew,et al.  The BIOX® Process for Biooxidation of Gold-Bearing Ores or Concentrates , 1997 .

[93]  M. Macías,et al.  Biological oxidation of ferrous iron: study of bioreactor efficiency. , 2004 .

[94]  A A Esener,et al.  Theory and applications of unstructured growth models: Kinetic and energetic aspects , 1983, Biotechnology and bioengineering.

[95]  T. Schauer,et al.  Details on MEM analysis of electrochemical noise data and correlation with impedance measurements for organic coatings on metals , 1998 .

[96]  Lorenzo Fedrizzi,et al.  Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion , 1996 .

[97]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[98]  E. Donati,et al.  Development of Thiobacillus biofilms for metal recovery. , 2001, Methods in enzymology.

[99]  R. Amils,et al.  Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. , 1997, International journal of systematic bacteriology.

[100]  R. Amils,et al.  The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. , 2005, Microbiology.

[101]  D. Johnson,et al.  Reductive Dissolution of Ferric Iron Minerals by Acidiphilium SJH , 2000 .

[102]  J. C. Gentina,et al.  CO2 supply in the biooxidation of an enargite-pyrite gold concentrate , 1998, Biotechnology Letters.

[103]  Merry Buckley Systems Microbiology: Beyond Microbial Genomics , 2004 .

[104]  C. Gómez,et al.  Electrochemistry of chalcopyrite , 1996 .

[105]  Y. Fukumori,et al.  The Electron Transfer System in an Acidophilic Iron-Oxidizing Bacterium , 1991 .

[106]  W. Ingledew,et al.  The reductive reactions of Thiobacillus ferrooxidans on sulphur and selenium , 1989 .

[107]  A. Kletzin,et al.  Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens , 1999, Archives of Microbiology.

[108]  R. Córdova,et al.  XPS, SEM, EDX and EIS study of an electrochemically modified electrode surface of natural chalcocite (Cu2S) , 2001 .

[109]  H. Olem,et al.  Rotating-disc biological treatment of acid mine drainage , 1980 .

[110]  D. Grogan Selectable mutant phenotypes of the extremely thermophilic archaebacterium Sulfolobus acidocaldarius , 1991, Journal of bacteriology.

[111]  D. Kirchman,et al.  Attachment Stimulates Exopolysaccharide Synthesis by a Bacterium , 1993, Applied and environmental microbiology.

[112]  T. Ojumu,et al.  A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching , 2006 .

[113]  P. Vitorge,et al.  Pyrite dissolution in acidic media , 2004 .

[114]  E. Donati,et al.  The role of Acidithiobacillus Caldud in the bioleaching of metal sulfides , 2002 .

[115]  O. Tuovinen,et al.  Fast Kinetics of Fe2+ Oxidation in Packed-Bed Reactors , 1988 .

[116]  K L Subletta,et al.  Aerobic oxidation of hydrogen sulfide by Thiobacillus denitrificans , 1987, Biotechnology and bioengineering.

[117]  J. Petersen,et al.  Competitive bioleaching of pyrite and chalcopyrite , 2006 .

[118]  H. Gray,et al.  Electron tunneling in proteins: role of the intervening medium , 1996, JBIC Journal of Biological Inorganic Chemistry.

[119]  C. Jones,et al.  FACTORS AFFECTING METABOLISM AND FERROUS IRON OXIDATION IN SUSPENSIONS AND BATCH CULTURES OF THIOBACILLUS FERROOXIDANS: RELEVANCE TO FERRIC IRON LEACH SOLUTION REGENERATION , 1978 .

[120]  A. Steele,et al.  The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces , 2002 .

[121]  J. Banfield,et al.  Comparison of Acid Mine Drainage Microbial Communities in Physically and Geochemically Distinct Ecosystems , 2000, Applied and Environmental Microbiology.

[122]  A. E. Torma Oxidation of gallium sulfides by Thiobacillus ferrooxidans. , 1978, Canadian journal of microbiology.

[123]  C. Mustin,et al.  Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans , 1993 .

[124]  C. Jerez Molecular Methods for the Identification and Enumeration of Bioleaching Microorganisms , 1997 .

[125]  C. Webb,et al.  Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation , 2000, Applied Microbiology and Biotechnology.

[126]  W. Sand,et al.  Bioleaching - a result of interfacial processes caused by extracellular polymeric substances (EPS). , 2003 .

[127]  V. Bonnefoy,et al.  Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. , 2004, Microbiology.

[128]  Y. Shirakawa,et al.  Decrease in iron oxidizing activity of Thiobacillus ferrooxidans adsorbed on activated carbon , 1990, Biotechnology and bioengineering.

[129]  R. Amann,et al.  An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization , 2003, Applied and Environmental Microbiology.

[130]  Douglas E. Rawlings,et al.  Biomining : Theory, Microbes and Industrial Processes , 2006 .

[131]  F. Crundwell,et al.  Growth of Thiobacillus ferrooxidans: a Novel Experimental Design for Batch Growth and Bacterial Leaching Studies , 1997, Applied and environmental microbiology.

[132]  D. Rawlings The molecular genetics of mesophilic, acidophilic, chemolithotrophic, iron-or sulfur-oxidizing microorganisms , 1999 .

[133]  W. Sand,et al.  Determination of reaction energy values for biological pyrite oxidation by calorimetry. , 1998 .

[134]  P. Wilmes,et al.  The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. , 2004, Environmental microbiology.

[135]  W. D. de Vos,et al.  Characterization, Expression, and Mutation of the Lactococcus lactis galPMKTE Genes, Involved in Galactose Utilization via the Leloir Pathway , 2003, Journal of bacteriology.

[136]  O. Tuovinen,et al.  Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans , 1995 .

[137]  P. Holmes,et al.  Mechanism of Pyrite Dissolution in the Presence ofThiobacillus ferrooxidans , 1999, Applied and Environmental Microbiology.

[138]  Felipe A. Veloso,et al.  Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis , 2003, BMC Genomics.

[139]  F. García-Ochoa,et al.  Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: Influence of media composition , 2005 .

[140]  Claudio Pagella,et al.  H2S gas treatment with Thiobacillus Ferrooxidans – process performance and stability , 1996 .

[141]  Antonio Ballester,et al.  New information on the chalcopyrite bioleaching mechanism at low and high temperature , 2003 .

[142]  R. Steudel Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes , 1996 .

[143]  D. Kirwan,et al.  Effect of solids on oxygen transfer in agitated three-phase systems , 1987 .

[144]  K B Hallberg,et al.  Biodiversity of acidophilic prokaryotes. , 2001, Advances in applied microbiology.

[145]  P. Norris Thermophiles and Bioleaching , 1997 .

[146]  C. Mustin,et al.  Bioleaching of pyrite by Thiobacillus ferrooxidans: fixed grains electrode to study superficial oxidized compounds , 1999 .

[147]  T. Noike,et al.  Effect of operation conditions on biological Fe2+ oxidation with rotating biological contactors , 1986 .

[148]  R. Tengerdy,et al.  Inhibition of microbial growth and metabolism by excess turbulence. , 1991, Biotechnology and bioengineering.

[149]  D. Johnson,et al.  Biodiversity and ecology of acidophilic microorganisms , 1998 .

[150]  A. Humphrey Biochemical Reaction Engineering , 1978 .

[151]  S. Brochot,et al.  Modelling of the bioleaching of sulphide ores: application for the simulation of the bioleaching/gravity section of the Kasese Cobalt Company Ltd process plant , 2004 .

[152]  R. Amils,et al.  Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties , 1999 .

[153]  R. Amann,et al.  Microbial Ecology of an Extreme Acidic Environment, the Tinto River , 2003, Applied and Environmental Microbiology.

[154]  F. Crundwell,et al.  Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism , 1998, Applied and Environmental Microbiology.

[155]  W. Burgstaller,et al.  Leaching of metals with fungi , 1993 .

[156]  Fernando Acevedo,et al.  Present and future of bioleaching in developing countries , 2002 .

[157]  L. Nikolov,et al.  Continuous bacterial ferrous iron oxidation by Thiobacillus ferrooxidans in rotating biological contactors , 1986, Biotechnology Letters.

[158]  M. Keddam,et al.  Review of Applications of Impedance and Noise Analysis to Uniform and Localized Corrosion , 1992 .

[159]  W. Sand,et al.  Evidence for the Existence of a Sulphur Oxygenase in Sulfolobus brierleyi , 1986 .

[160]  T. Kaghazchi,et al.  Bioleaching of molybdenum from low-grade copper ore , 1999 .

[161]  H. Tributsch Direct versus indirect bioleaching , 2001 .

[162]  J. Banfield,et al.  An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.

[163]  N. G. Thompson,et al.  Relationship Between Conventional Pitting and Protection Potentials and a New, Unique Pitting Potential , 1992 .

[164]  D. Holmes,et al.  The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. , 2005, Microbiology.

[165]  M. Jeffrey,et al.  An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solutions , 2000 .

[166]  W. Sand,et al.  Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. , 2006, Research in microbiology.

[167]  B. Jørgensen,et al.  Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria , 2005, Nature.

[168]  J. Rubio,et al.  Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surface , 1992 .

[169]  H. Olem,et al.  Acid mine drainage treatment with rotating biological contactors , 1977 .

[170]  David F. Ollis,et al.  Biochemical Engineering Fundamentals , 1976 .

[171]  S. Willscher,et al.  Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump , 2003 .

[172]  J. Shennan Microbial attack on sulphur‐containing hydrocarbons: Implications for the biodesulphurisation of oils and coals , 1996 .

[173]  W. Sand,et al.  Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching , 1998, Applied and Environmental Microbiology.

[174]  R. Amils,et al.  Microbial Community Composition and Ecology of an Acidic Aquatic Environment: The Tinto River, Spain , 2000, Microbial Ecology.

[175]  I. Castro,et al.  Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures , 2000 .

[176]  A. Skłodowska,et al.  Relative surface charge, hydrohobicity of bacterial cells and their affinity to substrate during copper bioleaching from post-flotation wastes , 1998, Biotechnology Letters.

[177]  H. Satoh,et al.  Bacteria help desulfurize gas , 1988 .

[178]  P. Norris,et al.  Growth and iron oxidation by acidophilic moderate thermophiles , 1985 .

[179]  W. Sand,et al.  Evaluation of Leptospirillum ferrooxidans for Leaching , 1992, Applied and environmental microbiology.

[180]  W. Ingledew,et al.  A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. , 1980, Biochimica et biophysica acta.

[181]  W. Sand,et al.  Sulfur chemistry in bacterial leaching of pyrite , 1996, Applied and environmental microbiology.

[182]  S. Oszczepalski,et al.  The occurrences of the rare earth elements and the platinum group elements in relation to base metal zoning in the vicinity of Rote Fäule in the Kupferschiefer of Poland , 2001 .

[183]  W. Richmond,et al.  An electrochemical study of the oxidation of chalcopyrite in acidic solution , 1990 .

[184]  J. Lochmann,et al.  Kinetic anomalies of dissolution of sphalerite in ferric sulfate solution , 1995 .

[185]  J. G. Kuenen,et al.  Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: A case study related to the microbial desulfurization of coal , 1990, Biotechnology and bioengineering.

[186]  T. Urich,et al.  X-ray Structure of a Self-Compartmentalizing Sulfur Cycle Metalloenzyme , 2006, Science.

[187]  V. Bonnefoy,et al.  Construction and Characterization of arecA Mutant of Thiobacillus ferrooxidans by Marker Exchange Mutagenesis , 2000, Journal of bacteriology.

[188]  C. Friedrich Physiology and genetics of sulfur-oxidizing bacteria. , 1998, Advances in microbial physiology.

[189]  W. Sand,et al.  Towards a Novel Bioleaching Mechanism , 1998 .

[190]  Y. Konishi,et al.  Kinetics of absorption of hydrogen sulfide into aqueous ferric sulfate solutions , 1990 .

[191]  F. J. Alguacil,et al.  Reactivity of a molybdenite concentrate against chemical or bacterial attack , 2001 .

[192]  A. Kletzin Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens , 1989, Journal of bacteriology.

[193]  Roy Fisher,et al.  It Follows That , 1994 .

[194]  M. Seeger,et al.  Response of Thiobacillus ferrooxidans to phosphate limitation , 1993 .

[195]  Nigel N. Clark Predicting the Circulation Rate in Pachuca Tanks with Full Height Draft Tubes , 1984 .

[196]  R. Mateles Calculation of the oxygen required for cell production. , 1971, Biotechnology and bioengineering.

[197]  Shrihari,et al.  Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans , 1995 .

[198]  A. Rutenberg,et al.  Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution , 2001 .

[199]  Leslie L. Orr What are they doing , 2001 .

[200]  D. C. Silverman,et al.  Electrochemical Impedance Technique — A Practical Tool for Corrosion Prediction , 1988 .

[201]  M. Fairweather,et al.  How does bioleaching start , 2003 .

[202]  K. Sublette,et al.  Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. , 1987, Biotechnology and bioengineering.

[203]  M. Tsunekawa,et al.  Bioleaching of sarcheshmeh molybdenite concentrate for extraction of rhenium , 2005 .

[204]  Banfield,et al.  Distribution of thiobacillus ferrooxidans and leptospirillum ferrooxidans: implications for generation of acid mine drainage , 1998, Science.

[205]  E. Donati,et al.  Bioleaching of heazelwoodite by Thiobacillus spp , 2001 .

[206]  R. Overbeek,et al.  Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[207]  D. Karamanev Model of the biofilm structure of Thiobacillus ferrooxidans , 1991 .

[208]  M. Boon,et al.  Chemical oxidation kinetics of pyrite in bioleaching processes , 1998 .

[209]  M. Valix,et al.  The effects of mineralogy on the biological leaching of nickel laterite ores , 2001 .

[210]  J. Banfield,et al.  Genome-Directed Isolation of the Key Nitrogen Fixer Leptospirillum ferrodiazotrophum sp. nov. from an Acidophilic Microbial Community , 2005, Applied and Environmental Microbiology.

[211]  Y. Fukumori,et al.  Fe(II)-oxidizing enzyme purified from Thiobacillus ferrooxidans , 1988 .

[212]  R. Greef,et al.  Instrumental Methods in Electrochemistry , 2002 .

[213]  Q. She,et al.  Key Role of Cysteine Residues in Catalysis and Subcellular Localization of Sulfur Oxygenase-Reductase of Acidianus tengchongensis , 2005, Applied and Environmental Microbiology.

[214]  Campbell W. Robinson,et al.  Application of airlift gas-liquid-solid reactors in biotechnology , 1992 .

[215]  R. Blake,et al.  Solubilization of Minerals by Bacteria: Electrophoretic Mobility of Thiobacillus ferrooxidans in the Presence of Iron, Pyrite, and Sulfur , 1994, Applied and environmental microbiology.

[216]  L. García-Rubio,et al.  Application of Measurement Models to Impedance Spectroscopy II . Determination of the Stochastic Contribution to the Error Structure , 1995 .

[217]  J. Rimstidt,et al.  Rates of reaction of pyrite and marcasite with ferric iron at pH 2 , 1984 .

[218]  Paolo Massacci Proceedings of the XXI International Mineral Processing Congress , 2000 .

[219]  W. Abraham,et al.  Microbial indicator groups in acidic mining lakes. , 2005, Environmental microbiology.

[220]  Hsuan-Liang Liu,et al.  A semiempirical model for bacterial growth and bioleaching of Acidithiobacillus spp. , 2004 .

[221]  W. Sand,et al.  Sulfur chemistry, biofilm, and the (in)direct attack mechanism — a critical evaluation of bacterial leaching , 1995, Applied Microbiology and Biotechnology.

[222]  E. Kálmán,et al.  Role of redox properties of biofilms in corrosion processes , 2001 .

[223]  W. Sand,et al.  The EPS of Acidithiobacillus ferrooxidans--a model for structure-function relationships of attached bacteria and their physiology. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[224]  D. Macdonald,et al.  Characterizing electrochemical systems in the frequency domain , 1998 .

[225]  C. Brierley Bacterial succession in bioheap leaching , 2001 .

[226]  Cornelius T. Leondes,et al.  Fuzzy Theory Systems: Techniques and Applications , 1999 .

[227]  W. Sand,et al.  Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans , 2006 .

[228]  E. N. Kaufman,et al.  Biodesulfurization of Flue Gases and Other Sulfate/Sulfite Waste Streams Using Immobilized Mixed Sulfate‐Reducing Bacteria , 1997, Biotechnology progress.

[229]  Y. Konishi,et al.  Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans , 1992, Biotechnology and bioengineering.

[230]  Violaine Bonnefoy,et al.  Characterization of an Operon Encoding Two c-Type Cytochromes, an aa3-Type Cytochrome Oxidase, and Rusticyanin in Thiobacillus ferrooxidansATCC 33020 , 1999, Applied and Environmental Microbiology.

[231]  D. Johnson,et al.  Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria , 1991, Applied and environmental microbiology.

[232]  D. Johnson,et al.  Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals , 1997 .

[233]  O. Farver,et al.  The role of the medium in long-range electron transfer , 1997, JBIC Journal of Biological Inorganic Chemistry.

[234]  J. C. Gentina,et al.  Biooxidation of a gold concentrate in a continuous stirred tank reactor: mathematical model and optimal configuration , 2004 .

[235]  O. Tuovinen,et al.  Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks , 2002 .

[236]  W. Sand,et al.  The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. , 2003, Microbiology.

[237]  Shaoyuan Shi,et al.  Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans , 2004 .

[238]  G. Andrews The selective adsorption of Thiobacilli to dislocation sites on pyrite surfaces. , 1988, Biotechnology and bioengineering.

[239]  F. Habashi Dissolution of minerals and hydrometallurgical processes , 1983, Naturwissenschaften.

[240]  J. Rimstidt,et al.  Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism , 2003 .

[241]  C. Friedrich,et al.  Prokaryotic sulfur oxidation. , 2005, Current opinion in microbiology.

[242]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[243]  J. Amend,et al.  Sulfur biogeochemistry : past and present , 2004 .

[244]  D. Vaughan Electronic Structures of Sulfides and Leaching Behavior , 1984 .

[245]  J. Monod The Growth of Bacterial Cultures , 1949 .

[246]  D. Hunt,et al.  Genomics, metagenomics and proteomics in biomining microorganisms. , 2006, Biotechnology advances.

[247]  F. Guerlesquin,et al.  Interaction-induced Redox Switch in the Electron Transfer Complex Rusticyanin-Cytochrome c 4 * , 1999, The Journal of Biological Chemistry.

[248]  D. Haras,et al.  Evidence for a Functional Quorum-Sensing Type AI-1 System in the Extremophilic Bacterium Acidithiobacillus ferrooxidans , 2005, Applied and Environmental Microbiology.

[249]  O. Levenspiel The monod equation: A revisit and a generalization to product inhibition situations , 1980 .

[250]  H. Toledo,et al.  An Exported Rhodanese-Like Protein Is Induced during Growth of Acidithiobacillus ferrooxidans in Metal Sulfides and Different Sulfur Compounds , 2002, Applied and Environmental Microbiology.

[251]  M. Dopson,et al.  Reduced sulfur compound oxidation by Thiobacillus caldus , 1996, Journal of bacteriology.

[252]  F. Battaglia-Brunet,et al.  Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor , 2003 .

[253]  Y. Konishi,et al.  Bioleaching of sphalerite by the acidophilic thermophile Acidianus brierleyi , 1998 .

[254]  D. Koch Electrochemistry of Sulfide Minerals , 1975 .

[255]  D. Holmes,et al.  Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans , 2005, Journal of Industrial Microbiology and Biotechnology.

[256]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .

[257]  K. Sublette,et al.  Oxidation of hydrogen sulfide by Thiobacilli , 1990, Biotechnology and bioengineering.

[258]  C. L. Brierley,et al.  Present and future commercial applications of biohydrometallurgy , 2001 .

[259]  M. Ostrowski,et al.  Bacterial leaching of copper from alkaline and neutral postflotation wastes with the use of brown coal. , 1990 .

[260]  T. Urich,et al.  Dissimilatory Oxidation and Reduction of Elemental Sulfur in Thermophilic Archaea , 2004, Journal of bioenergetics and biomembranes.

[261]  J. Wylie,et al.  Biophysical characterization of OprB, a glucose-inducible porin ofPseudomonas aeruginosa , 1993, Journal of bioenergetics and biomembranes.

[262]  Douglas E. Rawlings,et al.  Mining with Microbes , 1995, Bio/Technology.

[263]  S. Beard,et al.  Differential Protein Expression during Growth of Acidithiobacillus ferrooxidans on Ferrous Iron, Sulfur Compounds, or Metal Sulfides , 2004, Applied and Environmental Microbiology.

[264]  D. McMahon,et al.  Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. , 2003, Journal of dairy science.

[265]  Corale L. Brierley,et al.  Mining Biotechnology: Research to Commercial Development and Beyond , 1997 .

[266]  C. Webb,et al.  Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised in polyurethane foam support particles , 1992, Applied Microbiology and Biotechnology.

[267]  Shaoyuan Shi,et al.  Bioleaching of marmatite flotation concentrate with a moderately thermoacidophilic iron-oxidizing bacterial strain , 2005 .

[268]  Jose C. Merchuk,et al.  Distribution of energy dissipation in airlift reactors , 1995 .

[269]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[270]  L. Warren,et al.  Microbially driven acidity generation in a tailings lake , 2005 .

[271]  E. Stackebrandt,et al.  Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments , 1994, Applied and environmental microbiology.

[272]  Inna Dubchak,et al.  Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria , 2004, Genome Biology.

[273]  Guangjin Zhang,et al.  The contribution of direct and indirect actions in bioleaching of pentlandite , 2005 .

[274]  D. Savage,et al.  Gas treating with chemical solvents , 1983 .

[275]  F. Crundwell,et al.  Modeling, simulation, and optimization of bacterial leaching reactors. , 2000, Biotechnology and bioengineering.

[276]  D. Boxer,et al.  The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferro-oxidans. , 1978, The Biochemical journal.

[277]  H. Linge Reactivity comparison of Australian chalcopyrite concentrates in acidified ferric solution , 1977 .

[278]  K. Timmis,et al.  Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. , 2000, International journal of systematic and evolutionary microbiology.

[279]  M. N. Hughes,et al.  Metals and micro-organisms , 1989 .

[280]  F. Mansfeld,et al.  Electrochemical Noise Analysis of Iron Exposed to NaCl Solutions of Different Corrosivity , 1993 .

[281]  S. Pirt,et al.  Mass Balancing: an Effective Tool for Fermentation Process Optimization , 1987 .

[282]  T. Kai,et al.  Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria , 2000 .

[283]  Shaoyuan Shi,et al.  Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor , 2005 .

[284]  K. McEwan,et al.  Bioleaching of base metal sulphide concentrates: A comparison of mesophile and thermophile bacterial cultures , 1999 .

[285]  D. Rawlings,et al.  Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates , 2005, Microbial cell factories.

[286]  W. Sand,et al.  Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur , 1999, Applied and Environmental Microbiology.

[287]  J. Banfield,et al.  Phylogeny of Microorganisms Populating a Thick, Subaerial, Predominantly Lithotrophic Biofilm at an Extreme Acid Mine Drainage Site , 2000, Applied and Environmental Microbiology.

[288]  S. Keeling,et al.  Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap , 2005 .

[289]  R. Córdova,et al.  SEM, EDX and EIS study of an electrochemically modified electrode surface of natural enargite (Cu3AsS4) , 2000 .

[290]  P. Norris,et al.  Respiratory chain components of iron-oxidizing acidophilic bacteria , 1990 .

[291]  D. Cantero,et al.  Comparison of the effects of temperature and pH on iron oxidation and survival of Thiobacillus ferrooxidans (type strain) and a ‘Leptospirillum ferrooxidans‘- like isolate , 1999 .

[292]  S. Groudev Use of Heterotrophic Microorganisms in Mineral Biotechnology , 1987, 1987.

[293]  G. Olson Microbial oxidation of gold ores and gold bioleaching , 1994 .

[294]  R. Cord-Ruwisch,et al.  The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching , 2000 .

[295]  A. Myerson,et al.  The adsorption of Thiobacillus ferrooxidans on coal surfaces , 1986, Biotechnology and bioengineering.

[296]  C. Cooney,et al.  Growth of Microorganisms , 2001 .

[297]  D. Rawlings,et al.  Biomineralization of metal-containing ores and concentrates. , 2003, Trends in biotechnology.

[298]  W. Achouak,et al.  Enzyme-Linked Immunofiltration Assay To Estimate Attachment of Thiobacilli to Pyrite , 1998, Applied and Environmental Microbiology.

[299]  D. Cantero,et al.  Kinetic equation for growth of Thiobacillus ferrooxidans in submerged culture over aqueous ferrous sulphate solutions , 1996 .

[300]  H. Toledo,et al.  Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. , 1992, FEMS microbiology letters.

[301]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[302]  D. C. Silverman Corrosion Rate Estimation from Pseudo-Inductive Electrochemical Impedance Response , 1989 .

[303]  J. C. Gentina,et al.  Optimization of pulp density and particle size in the biooxidation of a pyritic gold concentrate by Sulfolobus metallicus , 2004 .

[304]  C. Gómez,et al.  A study of bioleached chalcopyrite surfaces in the presence of Ag(I) by voltammetric methods , 1997 .

[305]  W. Ludwig,et al.  Unusual bacterial strain closely related to Bacillus insolitus , 1996 .

[306]  David S. Holmes,et al.  Identification of a Gene Cluster for the Formation of Extracellular Polysaccharide Precursors in the Chemolithoautotroph Acidithiobacillus ferrooxidans , 2005, Applied and Environmental Microbiology.

[307]  Gabriel Bitton,et al.  Encyclopedia of environmental microbiology , 2002 .

[308]  T. Biegler,et al.  The Electrochemistry of Surface Oxidation of Chalcopyrite , 1985 .

[309]  M. Boon,et al.  The Mechanism and Kinetics of Bioleaching Sulphide Minerals , 1998 .

[310]  S. Nagpal,et al.  Effect of carbon dioxide concentration on the bioleaching of a pyrite–arsenopyrite ore concentrate , 1993, Biotechnology and bioengineering.

[311]  S. Waksman MICROÖRGANISMS CONCERNED IN THE OXIDATION OF SULFUR IN THE SOIL: III. MEDIA USED FOR THE ISOLATION OF SULFUR BACTERIA FROM THE SOIL , 1922 .

[312]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[313]  A. P. Harrison,et al.  Respiratory components in acidophilic bacteria that respire on iron , 1992 .

[314]  D. Karamanev,et al.  Influence of some physicochemical parameters on bacterial activity of biofilm: Ferrous iron oxidation by Thiobacillus ferrooxidans , 1988, Biotechnology and bioengineering.

[315]  K. Kamimura,et al.  Involvement of Sulfide:Quinone Oxidoreductase in Sulfur Oxidation of an Acidophilic Iron-Oxidizing Bacterium, Acidithiobacillus ferrooxidans NASF-1 , 2004, Bioscience, biotechnology, and biochemistry.

[316]  F. Sanz,et al.  Characterization of bornite (Cu5FeS4) electrodes in the presence of the bacterium Acidithiobacillus ferrooxidans , 2003 .

[317]  E. Donati,et al.  Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms , 2001 .

[318]  W. Sand,et al.  Physiological characteristics of thiobacillus ferrooxidans and leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching , 1992 .

[319]  A. Benedetti,et al.  Electrochemical noise analysis of bioleaching of bornite (Cu5FeS4) by Acidithiobacillus ferrooxidans , 2006 .

[320]  J. P. Anerousis,et al.  An Updated Examination of Gas Sweetening by the Iron Sponge Process , 1984 .

[321]  V. N. Misra,et al.  Bioleaching with ultrasound. , 2005, Ultrasonics sonochemistry.

[322]  E. Padan,et al.  Cyanobacterial Sulfide-Quinone Reductase: Cloning and Heterologous Expression , 2000, Journal of bacteriology.

[323]  K. Sublette,et al.  Oxidation of hydrogen sulfide by mixed cultures of thiobacillus denitrificans and heterotrophs. , 1987, Biotechnology and bioengineering.

[324]  O. Tuovinen,et al.  Tolerance ofThiobacillus ferrooxidans to some metals , 2005, Antonie van Leeuwenhoek.

[325]  T. Imaizumi Some industrial applications of inorganic microbial oxidation in Japan , 1986 .

[326]  C. Webb,et al.  Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans , 1996, Applied Microbiology and Biotechnology.

[327]  D. Holmes,et al.  Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence , 2003 .

[328]  Lawrence E Murr,et al.  Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, with A. E. Torma and J. A. Brierly , Academic Press, New York, , 1978 .

[329]  N. Ohmura,et al.  Selective Adhesion of Thiobacillus ferrooxidans to Pyrite , 1993, Applied and environmental microbiology.

[330]  A. Akcil,et al.  Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron , 2004 .