Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog

The structure of the ternary complex consisting of yeast phenylalanyl-transfer RNA (Phe-tRNAPhe), Thermus aquaticus elongation factor Tu (EF-Tu), and the guanosine triphosphate (GTP) analog GDPNP was determined by x-ray crystallography at 2.7 angstrom resolution. The ternary complex participates in placing the amino acids in their correct order when messenger RNA is translated into a protein sequence on the ribosome. The EF-Tu-GDPNP component binds to one side of the acceptor helix of Phe-tRNAPhe involving all three domains of EF-Tu. Binding sites for the phenylalanylated CCA end and the phosphorylated 5′ end are located at domain interfaces, whereas the T stem interacts with the surface of the β-barrel domain 3. The binding involves many conserved residues in EF-Tu. The overall shape of the ternary complex is similar to that of the translocation factor, EF-G-GDP, and this suggests a novel mechanism involving “molecular mimicry” in the translational apparatus.

[1]  D. Ringe,et al.  Structure of the human ADP-ribosylation factor 1 complexed with GDP , 1994, Nature.

[2]  Heidi E. Hamm,et al.  Structural determinants for activation of the α-subunit of a heterotrimeric G protein , 1994, Nature.

[3]  M. Rodnina,et al.  GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Harry F. Noller,et al.  Intermediate states in the movement of transfer RNA in the ribosome , 1989, Nature.

[5]  J. Nyborg,et al.  Refined structure of elongation factor EF-Tu from Escherichia coli. , 1992, Journal of molecular biology.

[6]  O. Wiborg,et al.  Escherichia coli elongation-factor-Tu mutants with decreased affinity for aminoacyl-tRNA. , 1994, European journal of biochemistry.

[7]  W. Kabsch,et al.  Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form , 1995, Nature.

[8]  A. Bairoch,et al.  The SWISS-PROT protein sequence data bank: current status. , 1994, Nucleic acids research.

[9]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[10]  S. Limmer,et al.  Effector region of the translation elongation factor EF-Tu.GTP complex stabilizes an orthoester acid intermediate structure of aminoacyl-tRNA in a ternary complex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Joshi,et al.  Structural features in aminoacyl‐tRNAs required for recognition by elongation factor Tu , 1987, FEBS letters.

[12]  V. Erdmann,et al.  Ternary complexes of Escherichia coli aminoacyl-tRNAs with the elongation factor Tu and GTP: thermodynamic and structural studies. , 1990, Biochimica et biophysica acta.

[13]  A. Wittinghofer,et al.  The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP. , 1982, The Journal of biological chemistry.

[14]  M. Ehrenberg,et al.  How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation? , 1990, Journal of molecular biology.

[15]  B. Clark,et al.  Cross-linking of tRNA at two different sites of the elongation factor Tu. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Hilgenfeld,et al.  Ternary complex between elongation factor Tu.GTP and Phe-tRNA(Phe). , 1993, Biochimie.

[17]  M. Ehrenberg,et al.  Two GTPs are hydrolysed on two molecules of EF-Tu for each elongation cycle during code translation. , 1994, Biochimie.

[18]  F. Jurnak,et al.  Relative affinities of all Escherichia coli aminoacyl-tRNAs for elongation factor Tu-GTP. , 1984, The Journal of biological chemistry.

[19]  A. Wittinghofer,et al.  The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with RaplA and a GTP analogue , 1995, Nature.

[20]  J. Buhler,et al.  Cloning, nucleotide sequence, and expression of one of two genes coding for yeast elongation factor 1 alpha. , 1985, The Journal of biological chemistry.

[21]  J. Nyborg,et al.  The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. , 1993, Structure.

[22]  V. Erdmann,et al.  Sequence of the tufA gene encoding elongation factor EF-Tu from Thermus aquaticus and overproduction of the protein in Escherichia coli. , 1992, European journal of biochemistry.

[23]  R. Leberman,et al.  Modification of amino groups in EF-Tu.GTP and the ternary complex EF-Tu.GTP.valyl-tRNAVal. , 1984, European journal of biochemistry.

[24]  J. Ebel,et al.  Crosslinking of elongation factor Tu to tRNAPhe by trans‐diamminedichloroplatinum (II) Characterization of two crosslinking sites on EF‐Tu , 1989, FEBS letters.

[25]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[26]  A. Spirin,et al.  How are tRNAs and mRNA arranged in the ribosome? An attempt to correlate the stereochemistry of the tRNA-mRNA interaction with constraints imposed by the ribosomal topography. , 1992, Nucleic acids research.

[27]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[28]  Heidi E. Hamm,et al.  The 2.2 Å crystal structure of transducin-α complexed with GTPγS , 1993, Nature.

[29]  B. Clark,et al.  The complete amino-acid sequence of elongation factor Tu from Escherichia coli. , 1980, European journal of biochemistry.

[30]  A. Klug,et al.  Crystallographic refinement of yeast phenylalanine transfer RNA at 2-5A resolution. , 1976, Journal of molecular biology.

[31]  Renos Savva,et al.  Nucleotide mimicry in the crystal structure of the uracil-DNA glycosylase–uracil glycosylase inhibitor protein complex , 1995, Nature Structural Biology.

[32]  M. Ehrenberg,et al.  Two GTPs are consumed on EF‐Tu per peptide bond in poly(Phe) synthesis, in spite of switching stoichiometry of the EF‐Tu·aminoacyl‐tRNA complex with temperature , 1995, FEBS letters.

[33]  S. Sprang,et al.  Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. , 1994, Science.

[34]  B. Clark,et al.  Purification and crystallization of the ternary complex of elongation factor Tu:GTP and Phe‐tRNAPhe , 1994, FEBS letters.

[35]  M. Sprinzl,et al.  The role of modified purine 64 in initiator/elongator discrimination of tRNA(iMet) from yeast and wheat germ. , 1990, Nucleic acids research.

[36]  A. Weijland,et al.  Why do two EF-Tu molecules act in the elongation cycle of protein biosynthesis? , 1994, Trends in biochemical sciences.

[37]  B. Meloun,et al.  Histidine residues in elongation factor EF-tu from Escherichia coli protected by aminoacyl-tRNA against photo-oxidation. , 1984, European journal of biochemistry.

[38]  J. Doudna,et al.  Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Leberman,et al.  Small-angle neutron scattering study of the ternary complex formed between bacterial elongation factor Tu, guanosine 5'-triphosphate, and valyl-tRNAVal. , 1986, Biochemistry.

[40]  Stoichiometry of the EF‐Tu · GTP complex with aminoacyl‐tRNA: ternary of quinternary? , 1995, FEBS letters.

[41]  N. Seeman,et al.  Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA , 1974, Science.

[42]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[43]  D. Tronrud Conjugate-direction minimization: an improved method for the refinement of macromolecules. , 1992, Acta crystallographica. Section A, Foundations of crystallography.

[44]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[45]  J. Tainer,et al.  Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: Protein mimicry of DNA , 1995, Cell.

[46]  J. Lake,et al.  Elongation factor Tu localized on the exterior surface of the small ribosomal subunit. , 1986, Journal of molecular biology.

[47]  B. Clark,et al.  The site of interaction of aminoacyl‐tRNA with elongation factor Tu. , 1982, The EMBO journal.

[48]  Y. Ovchinnikov,et al.  Localization of the elongation factor g on escherichia coli ribosome , 1981, FEBS letters.

[49]  C. Sander,et al.  How does the switch II region of G‐domains work? , 1993, FEBS letters.

[50]  D. Moras,et al.  The aminoacyl‐tRNA synthetase family: Modules at work , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  C. W. Hilbers,et al.  Letters to the editor: Nuclear magnetic resonance studies of protein-RNA interactions. I. The elongation factor Tu-GTP aminoacyl-tRNA complex. , 1974, Journal of molecular biology.

[52]  P. Sigler,et al.  The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. , 1991, The EMBO journal.

[53]  S H Kim,et al.  Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. , 1991, Journal of molecular biology.

[54]  K. Nierhaus,et al.  Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. , 1987, Biochimie.

[55]  M. Karplus,et al.  Crystallographic refinement by simulated annealing: application to crambin , 1989 .

[56]  L. Bosch,et al.  A second tRNA binding site on elongation factor Tu is induced while the factor is bound to the ribosome. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[57]  B. Clark,et al.  Structure of yeast phenylalanine tRNA at 3 Å resolution , 1974, Nature.

[58]  J. Jonák,et al.  Histidine‐118 of elongation factor Tu: its role in aminoacyl‐tRNA binding and regulation of the GTPase activity , 1994, FEBS letters.

[59]  A. Liljas,et al.  Three‐dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. , 1994, The EMBO journal.

[60]  L. Mora,et al.  Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Frank McCormick,et al.  The GTPase superfamily: conserved structure and molecular mechanism , 1991, Nature.

[62]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[63]  T. Steitz,et al.  The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. , 1994, The EMBO journal.

[64]  S Thirup,et al.  ALMA, an editor for large sequence alignments , 1990, Proteins.

[65]  A. Murzin A ribosomal protein module in EF-G and DNA gyrase , 1995, Nature Structural Biology.

[66]  P B Sigler,et al.  The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. , 1994, Nature.

[67]  W. Kabsch,et al.  Refined crystal structure of the triphosphate conformation of H‐ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. , 1990, The EMBO journal.