Chebyshev spectral methods for computing center manifolds

We propose a numerical approach for computing center manifolds of equilibria in ordinary differential equations. Near the equilibria, the center manifolds are represented as graphs of functions satisfying certain partial differential equations (PDEs). We use a Chebyshev spectral method for solving the PDEs numerically to compute the center manifolds. We illustrate our approach for three examples: A two-dimensional system, the Henon-Heiles system (a two-degree-of-freedom Hamiltonian system) and a three-degree-of-freedom Hamiltonian system which have one-, two- and four-dimensional center manifolds, respectively. The obtained results are compared with polynomial approximations and other numerical computations.

[1]  Wolf-Jürgen Beyn,et al.  Numerical Taylor expansions of invariant manifolds in large dynamical systems , 1998, Numerische Mathematik.

[2]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[3]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[4]  Jerrold E. Marsden,et al.  Foundations of Mechanics, Second Edition , 1987 .

[5]  Jerrold E. Marsden,et al.  Foundations of Mechanics: 2nd Edition , 1980 .

[6]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[7]  J. Mondelo,et al.  The parameterization method for invariant manifolds , 2016 .

[8]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[9]  Bernd Krauskopf,et al.  Computing Invariant Manifolds via the Continuation of Orbit Segments , 2007 .

[10]  Fuming Ma,et al.  Numerical calculation of invariant manifolds for maps , 1994, Numer. Linear Algebra Appl..

[11]  Timo Eirola,et al.  Numerical Taylor expansions for invariant manifolds , 2004, Numerische Mathematik.

[12]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[13]  Angel Jorba,et al.  A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems , 1999, Exp. Math..

[14]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[15]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[17]  John Guckenheimer,et al.  A Fast Method for Approximating Invariant Manifolds , 2004, SIAM J. Appl. Dyn. Syst..

[18]  K. Yagasaki Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers , 2010 .

[19]  J. Mondelo,et al.  The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .

[20]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[21]  Ariadna Farrés,et al.  On the high order approximation of the centre manifold for ODEs , 2010 .

[22]  Takashi Sakajo,et al.  Chaotic Motion of the N-Vortex Problem on a Sphere: I. Saddle-Centers in Two-Degree-of-Freedom Hamiltonians , 2007, J. Nonlinear Sci..

[23]  André Vanderbauwhede,et al.  Centre Manifolds, Normal Forms and Elementary Bifurcations , 1989 .

[24]  Alan R. Champneys,et al.  Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem , 1997 .