Global Optimization of Large-Scale Generalized Pooling Problems: Quadratically Constrained MINLP Models

The generalized pooling problem is a generic way of identifying a topology containing sources nodes, intermediate storage tanks, and sinks when monitoring specific stream qualities is imperative. One important application domain of the generalized pooling problem is wastewater treatment. Choosing among the wide array of available wastewater treatment technologies is a combinatorially complex optimization problem that requires nonconvex terms to monitor regulated stream qualities about a treatment plant. In this work, we address five instantiations of the generalized pooling problem to global optimality by introducing (i) a quadratically constrained MINLP model formulation that reduces the number of bilinear terms, (ii) novel piecewise underestimation methods for the nonconvex bilinear terms to tighten the relaxation [Gounaris et al. Ind. Eng. Chem. Res. 2009, 48, 5742−5766; Wicaksono and Karimi AIChE J. 2008, 54, 991−1008], and (iii) a branch-and-bound algorithm suited to address the combinatorial complex...

[1]  Christodoulos A. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Comput. Chem. Eng..

[2]  C. Floudas,et al.  Piecewise-Linear Approximations of Multidimensional Functions , 2010 .

[3]  I. Karimi,et al.  Piecewise linear relaxation of bilinear programs using bivariate partitioning , 2009 .

[4]  Ignacio E. Grossmann,et al.  An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms , 2008, Comput. Chem. Eng..

[5]  C. A. Haverly Studies of the behavior of recursion for the pooling problem , 1978, SMAP.

[6]  Mahmoud M. El-Halwagi,et al.  Global optimization for the synthesis of property-based recycle and reuse networks including environmental constraints , 2010, Comput. Chem. Eng..

[7]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[8]  Robin Smith,et al.  Automated design of total water systems , 2005 .

[9]  I. Karimi,et al.  Piecewise MILP under‐ and overestimators for global optimization of bilinear programs , 2008 .

[10]  Miguel J. Bagajewicz,et al.  Synthesis of non-isothermal heat integrated water networks in chemical processes , 2008, Comput. Chem. Eng..

[11]  Jeff T. Linderoth A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs , 2005, Math. Program..

[12]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[13]  Pierre Hansen,et al.  Pooling Problem: Alternate Formulations and Solution Methods , 2000, Manag. Sci..

[14]  Seong-Rin Lim,et al.  Synthesis of an Environmentally Friendly Water Network System , 2008 .

[15]  Christodoulos A. Floudas,et al.  Global optimization of a combinatorially complex generalized pooling problem , 2006 .

[16]  Antonis C. Kokossis,et al.  Wastewater minimisation of industrial systems using an integrated approach , 1998 .

[17]  N. Sahinidis,et al.  A Lagrangian Approach to the Pooling Problem , 1999 .

[18]  V. Visweswaran,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—II. Application of theory and test problems , 1990 .

[19]  Andreas A. Linninger,et al.  Design of environmental regulatory policies for sustainable emission reduction , 2006 .

[20]  Kurt M. Anstreicher,et al.  Institute for Mathematical Physics Semidefinite Programming versus the Reformulation–linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming Semidefinite Programming versus the Reformulation-linearization Technique for Nonconvex Quadratically Constrained , 2022 .

[21]  A. Chakraborty,et al.  A globally convergent mathematical model for synthesizing topologically constrained water recycle networks , 2009, Comput. Chem. Eng..

[22]  Chrysanthos E. Gounaris,et al.  Computational Comparison of Piecewise−Linear Relaxations for Pooling Problems , 2009 .

[23]  Christodoulos A. Floudas,et al.  Global Optimization of Gas Lifting Operations: A Comparative Study of Piecewise Linear Formulations , 2009 .

[24]  Robin Smith,et al.  Design of Water-Using Systems Involving Regeneration , 1998 .

[25]  C. Floudas,et al.  A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences , 1988 .

[26]  A. Elkamel,et al.  Global Optimization of Reverse Osmosis Network for Wastewater Treatment and Minimization , 2008 .

[27]  P. Pardalos,et al.  State of the art in global optimization: computational methods and applications , 1996 .

[28]  C. Floudas,et al.  Primal-relaxed dual global optimization approach , 1993 .

[29]  Ignacio E. Grossmann,et al.  Global optimization for the synthesis of integrated water systems in chemical processes , 2006, Comput. Chem. Eng..

[30]  Chuei-Tin Chang,et al.  A Mathematical Programming Model for Water Usage and Treatment Network Design , 1999 .

[31]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[32]  Christodoulos A. Floudas,et al.  Synthesis of isothermal reactor—separator—recycle systems , 1991 .

[33]  C. Floudas,et al.  Global optimum search for nonconvex NLP and MINLP problems , 1989 .

[34]  Pierre Hansen,et al.  A branch and cut algorithm for nonconvex quadratically constrained quadratic programming , 1997, Math. Program..

[35]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[36]  I. Grossmann,et al.  Global optimization of bilinear process networks with multicomponent flows , 1995 .

[37]  Christodoulos A. Floudas,et al.  Design, synthesis and scheduling of multipurpose batch plants via an effective continuous-time formulation , 2001 .

[38]  Samir Elhedhli,et al.  A new Lagrangean approach to the pooling problem , 2009, J. Glob. Optim..

[39]  C. Floudas,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .

[40]  Hanif D. Sherali,et al.  A new reformulation-linearization technique for bilinear programming problems , 1992, J. Glob. Optim..

[41]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[42]  M. El‐Halwagi,et al.  Convex Hull Discretization Approach to the Global Optimization of Pooling Problems , 2009 .

[43]  Christodoulos A. Floudas,et al.  ADVANCES FOR THE POOLING PROBLEM: MODELING, GLOBAL OPTIMIZATION, AND COMPUTATIONAL STUDIES , 2009 .

[44]  Christodoulos A. Floudas,et al.  Mathematical modeling and global optimization of large-scale extended pooling problems with the (EPA) complex emissions constraints , 2010, Comput. Chem. Eng..

[45]  Aharon Ben-Tal,et al.  Global minimization by reducing the duality gap , 1994, Math. Program..

[46]  L. Foulds,et al.  A bilinear approach to the pooling problem , 1992 .

[47]  L. S. Lasdon,et al.  Solving the pooling problem using generalized reduced gradient and successive linear programming algorithms , 1979, SMAP.

[48]  Miguel J. Bagajewicz,et al.  A review of recent design procedures for water networks in refineries and process plants , 2000 .

[49]  Robin Smith,et al.  Targeting Water Reuse with Multiple Contaminants , 1997 .

[50]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .