An XPS and STM Study of Oxidized Platinum Particles Formed by the Interaction between Pt/HOPG with NO2

[1]  A. M. Sorokin,et al.  Comparative XPS study of interaction of model and real Pt/C catalysts with NO2 , 2018 .

[2]  Xiaomei Yu,et al.  Observation of temperature-dependent kinetics for catalytic CO oxidation over TiO 2 -supported Pt catalysts , 2017 .

[3]  V. Bukhtiyarov,et al.  XPS Study of Stability and Reactivity of Oxidized Pt Nanoparticles Supported on TiO2 , 2017 .

[4]  A. Nartova,et al.  New Pt/Alumina model catalysts for STM and in situ XPS studies , 2017 .

[5]  A. V. Kalinkin,et al.  Oxidation of a platinum foil with nitrogen dioxide , 2016, Kinetics and Catalysis.

[6]  A. V. Kalinkin,et al.  Analysis of the oxidation state of platinum particles in supported catalysts by double differentiation of XPS lines , 2016, Journal of Structural Chemistry.

[7]  Dong Wook Kwon,et al.  Effect of Pt Particle Size and Valence State on the Performance of Pt/TiO2 Catalysts for CO Oxidation at Room Temperature , 2016 .

[8]  V. Bukhtiyarov,et al.  Using X-ray Photoelectron Spectroscopy To Evaluate Size of Metal Nanoparticles in the Model Au/C Samples , 2016 .

[9]  S. García,et al.  Spontaneous deposition of Pt‐nanoparticles on HOPG surfaces , 2015 .

[10]  A. V. Kalinkin,et al.  Size effect in the oxidation–reduction processes of platinum particles supported onto silicon dioxide , 2015, Kinetics and Catalysis.

[11]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm , 2015 .

[12]  A. M. Sorokin,et al.  Size effect in the oxidation of platinum nanoparticles on graphite with nitrogen dioxide: An XPS and STM study , 2014, Kinetics and Catalysis.

[13]  Yuxin Wang,et al.  Highly uniform platinum nanoparticles supported on graphite nanoplatelets as a catalyst for proton exchange membrane fuel cells , 2013 .

[14]  A. Stierle,et al.  In situ oxidation study of Pt nanoparticles on MgO(001) , 2013 .

[15]  T. Kondo,et al.  Support Effects of Carbon on Pt Catalysts , 2013, Topics in Catalysis.

[16]  Wen-Jauh Chen,et al.  Study of Pt catalyst on graphene and its application to fuel cell , 2013 .

[17]  F. Besenbacher,et al.  In situ study of CO oxidation on HOPG-supported Pt nanoparticles. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  Søren Dahl,et al.  Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions , 2012 .

[19]  Jianzhi Gao,et al.  Pinning platinum and Pt-oxide nanoparticles on graphite , 2012 .

[20]  A. V. Kalinkin,et al.  An XPS study of the oxidation of noble metal particles evaporated onto the surface of an oxide support in their reaction with NOx , 2012, Kinetics and Catalysis.

[21]  S. Dahl,et al.  H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPG , 2012 .

[22]  A. M. Sorokin,et al.  Model Ag/HOPG catalysts: preparation and STM/XPS study , 2011 .

[23]  Jorge H. Pazmiño,et al.  Kinetic studies of the stability of Pt for NO oxidation: Effect of sulfur and long-term aging , 2011 .

[24]  J. Croy,et al.  Oxygen Chemisorption, Formation, and Thermal Stability of Pt Oxides on Pt Nanoparticles Supported on SiO2/Si(001): Size Effects , 2011 .

[25]  B. Yuan,et al.  Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects , 2010 .

[26]  M. Nachtegaal,et al.  Dynamic Structure Changes of a Heterogeneous Catalyst within a Reactor: Oscillations in CO Oxidation over a Supported Platinum Catalyst , 2010 .

[27]  M. Stutzmann,et al.  Combined TPRx, in situ GISAXS and GIXAS studies of model semiconductor-supported platinum catalysts in the hydrogenation of ethene. , 2010, Physical chemistry chemical physics : PCCP.

[28]  A. V. Kalinkin,et al.  X-ray photoelectron spectra of platinum compounds excited with monochromatic AgLα irradiation , 2010 .

[29]  V. Balakotaiah,et al.  Experimental and kinetic study of NO oxidation on model Pt catalysts , 2009 .

[30]  J. Bokhoven,et al.  On highly active partially oxidized platinum in carbon monoxide oxidation over supported platinum catalysts , 2009 .

[31]  N. Takagi,et al.  In situ redispersion of platinum autoexhaust catalysts: an on-line approach to increasing catalyst lifetimes? , 2008, Angewandte Chemie.

[32]  D. Goodman,et al.  Highly active surfaces for CO oxidation on Rh, Pd, and Pt , 2007 .

[33]  V. Bukhtiyarov,et al.  X-ray photoelectron spectroscopic study of the interaction of supported metal catalysts with NOx , 2007 .

[34]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[35]  L. Ono,et al.  In situ gas-phase catalytic properties of TiC-supported size-selected gold nanoparticles synthesized by diblock copolymer encapsulation , 2006 .

[36]  W. Epling,et al.  Reaction of NO and O2 to NO2 on Pt : Kinetics and catalyst deactivation , 2006 .

[37]  D. Fairbrother,et al.  Quantification of Surface Oxides on Carbonaceous Materials , 2006 .

[38]  B. Hammer,et al.  Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. , 2005, Physical review letters.

[39]  W. Epling,et al.  NO2 inhibits the catalytic reaction of NO and O2 over Pt , 2005 .

[40]  Alexander Wokaun,et al.  Catalytic oxidation of nitrogen monoxide over Pt/SiO2 , 2004 .

[41]  E. Antolini Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells , 2003 .

[42]  E. Fridell,et al.  The Influence of Pt Oxide Formation and Pt Dispersion on the Reactions NO2⇔NO+1/2 O2 over Pt/Al2O3 and Pt/BaO/Al2O3 , 2002 .

[43]  J. Frenken,et al.  CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. , 2002, Physical review letters.

[44]  E. Savinova,et al.  Electrocatalytic properties of platinum anchored to the surface of highly oriented pyrolytic graphite , 2000 .

[45]  Y. Xing,et al.  Surface-Directed Deposition of Platinum Nanostructures on Graphite by Chemical Vapor Deposition , 2000 .

[46]  V. Pitchon,et al.  The Relation between Surface State and Reactivity in the DeNOX Mechanism on Platinum-Based Catalysts , 1999 .

[47]  G. Marin,et al.  Platinum deactivation: in situ EXAFS during aqueous alcohol oxidation reaction , 1998 .

[48]  Y. Abe,et al.  PREPARATION OF OXYGEN-CONTAINING PT AND PT OXIDE THIN FILMS BY REACTIVE SPUTTERING AND THEIR CHARACTERIZATION , 1998 .

[49]  B. Kasemo,et al.  Rapid Sintering in NO of Nanometer-Sized Pt Particles on γ-Al2O3 Observed by CO Temperature-Programmed Desorption and Transmission Electron Microscopy , 1993 .

[50]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[51]  V. Kaushik Identification of Mixed Platinum States and Electronic Effects of Support on Platinum in Supported Catalysts* , 1991 .

[52]  R. Mccabe,et al.  The passivating oxidation of platinum , 1988 .

[53]  M. Peuckert,et al.  Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy , 1984 .

[54]  M. G. Mason Electronic structure of supported small metal clusters , 1983 .

[55]  A. Katrib The reduction of Pt(IV) to Pt(II) by X-ray and argon-ion bombardment; evidence from X-ray photoelectron spectroscopy , 1980 .