On the Failure of the Finite Model Property in some Fuzzy Description Logics

Fuzzy Description Logics (DLs) are a family of logics which allow the representation of (and the reasoning with) structured knowledge affected by vagueness. Although most of the not very expressive crisp DLs, such as ALC, enjoy the Finite Model Property (FMP), this is not the case once we move into the fuzzy case. In this paper we show that if we allow arbitrary knowledge bases, then the fuzzy DLs ALC under Lukasiewicz and Product fuzzy logics do not verify the FMP even if we restrict to witnessed models; in other words, finite satisfiability and witnessed satisfiability are different for arbitrary knowledge bases. The aim of this paper is to point out the failure of FMP because it affects several algorithms published in the literature for reasoning under fuzzy DLs.

[1]  Nicholas Zvegintzov Structured representation of FMS integrating SI-NETS and high level petri nets , 1990 .

[2]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..

[3]  Petr Hájek,et al.  On witnessed models in fuzzy logic , 2007, Math. Log. Q..

[4]  Umberto Straccia,et al.  A fuzzy description logic for the semantic web , 2006, Fuzzy Logic and the Semantic Web.

[5]  Umberto Straccia,et al.  fuzzyDL: An expressive fuzzy description logic reasoner , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[6]  Petr Hájek Computational complexity of t-norm based propositional fuzzy logics with rational truth constants , 2006, Fuzzy Sets Syst..

[7]  Lotfi A. Zadeh,et al.  Please Scroll down for Article International Journal of General Systems Fuzzy Sets and Systems* Fuzzy Sets and Systems* , 2022 .

[8]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[9]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[10]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[11]  Giorgos Stoilos,et al.  A Framework for Reasoning with Expressive Continuous Fuzzy Description Logics , 2009, Description Logics.

[12]  Boris Motik,et al.  OWL 2: The next step for OWL , 2008, J. Web Semant..

[13]  Laurence A. Wolsey,et al.  Mixed Integer Programming , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[14]  Umberto Straccia,et al.  Mixed Integer Programming, General Concept Inclusions and Fuzzy Description Logics , 2007, EUSFLAT Conf..

[15]  Àngel García-Cerdaña,et al.  Fuzzy Description Logics and t-norm based fuzzy logics , 2010, Int. J. Approx. Reason..

[16]  Diego Calvanese,et al.  The description logic handbook: theory , 2003 .

[17]  Stefano Aguzzoli,et al.  The Complexity of McNaughton Functions of One Variable , 1998 .

[18]  Ian Horrocks,et al.  Description Logics as Ontology Languages for the Semantic Web , 2005, Mechanizing Mathematical Reasoning.

[19]  Umberto Straccia,et al.  Fuzzy description logics with general t-norms and datatypes , 2009, Fuzzy Sets Syst..

[20]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[21]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[22]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[23]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[24]  Bernhard Nebel,et al.  Reasoning and Revision in Hybrid Representation Systems , 1990, Lecture Notes in Computer Science.

[25]  Bernhard Nebel,et al.  An Empirical Analysis of Optimization Techniques for Terminological Representation Systems, or Making KRIS Get a Move On , 1992, KR.

[26]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[27]  Umberto Straccia,et al.  A Fuzzy Description Logic with Product T-norm , 2007, 2007 IEEE International Fuzzy Systems Conference.

[28]  Umberto Straccia,et al.  On Qualified Cardinality Restrictions in Fuzzy Description Logics under Ëukasiewicz semantics , 2008 .