EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation

[1]  Thomas C. Südhof,et al.  RIM Proteins Tether Ca2+ Channels to Presynaptic Active Zones via a Direct PDZ-Domain Interaction , 2011, Cell.

[2]  C. Lord,et al.  Behavioural phenotyping assays for mouse models of autism , 2010, Nature Reviews Neuroscience.

[3]  S. Kaech,et al.  The Interaction of Epac1 and Ran Promotes Rap1 Activation at the Nuclear Envelope , 2010, Molecular and Cellular Biology.

[4]  A. Barco,et al.  CREB's control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models , 2010, Trends in Neurosciences.

[5]  D. Arvanitis,et al.  Ephrin-B1 Reverse Signaling Controls a Posttranscriptional Feedback Mechanism via miR-124 , 2010, Molecular and Cellular Biology.

[6]  Leonard D. Goldstein,et al.  The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans , 2010, Nucleic acids research.

[7]  M. M. Soundarapandian,et al.  DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke , 2010, Cell.

[8]  Sathyanarayanan V. Puthanveettil,et al.  Characterization of Small RNAs in Aplysia Reveals a Role for miR-124 in Constraining Synaptic Plasticity through CREB , 2009, Neuron.

[9]  T. Carew,et al.  MicroRNAs in Memory Processing , 2009, Neuron.

[10]  Yasuhiro Sunaga,et al.  The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs , 2009, Science.

[11]  Bruno Poucet,et al.  Impaired long-term stability of CA1 place cell representation in mice lacking the transcription factor zif268/egr1 , 2009, Proceedings of the National Academy of Sciences.

[12]  G. G. Kelley,et al.  Enhanced Rap1 Activation and Insulin Secretagogue Properties of an Acetoxymethyl Ester of an Epac-selective Cyclic AMP Analog in Rat INS-1 Cells , 2009, Journal of Biological Chemistry.

[13]  Roberto Malinow,et al.  Synaptic AMPA Receptor Plasticity and Behavior , 2009, Neuron.

[14]  Eric M. Morrow,et al.  Autism and Brain Development , 2008, Cell.

[15]  Mark F. Bear,et al.  The Autistic Neuron: Troubled Translation? , 2008, Cell.

[16]  H. Zoghbi,et al.  Failure of neuronal homeostasis results in common neuropsychiatric phenotypes , 2008, Nature.

[17]  J. Zhu,et al.  Epac signaling is required for hippocampus-dependent memory retrieval , 2008, Proceedings of the National Academy of Sciences.

[18]  K. Koshibu,et al.  Control of the establishment of aversive memory by calcineurin and Zif268 , 2008, Nature Neuroscience.

[19]  Seema Sehrawat,et al.  Role of Epac1, an exchange factor for Rap GTPase, in endothelial microtubule dynamics and barrier function , 2007, Molecular biology of the cell.

[20]  Jae W. Lee,et al.  The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. , 2007, Genes & development.

[21]  F. Gage,et al.  A functional study of miR-124 in the developing neural tube. , 2007, Genes & development.

[22]  D. Geschwind,et al.  Autism spectrum disorders: developmental disconnection syndromes , 2007, Current Opinion in Neurobiology.

[23]  J. Bos,et al.  Epac proteins: multi-purpose cAMP targets. , 2006, Trends in biochemical sciences.

[24]  P. L. Peng,et al.  ADAR2-Dependent RNA Editing of AMPA Receptor Subunit GluR2 Determines Vulnerability of Neurons in Forebrain Ischemia , 2006, Neuron.

[25]  N. S. Austin,et al.  Synaptic Vesicle Protein 2 Enhances Release Probability at Quiescent Synapses , 2006, The Journal of Neuroscience.

[26]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[27]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[28]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[29]  Robert S. Zucker,et al.  cAMP Acts on Exchange Protein Activated by cAMP/cAMP-Regulated Guanine Nucleotide Exchange Protein to Regulate Transmitter Release at the Crayfish Neuromuscular Junction , 2005, The Journal of Neuroscience.

[30]  Gail Mandel,et al.  Defining the CREB Regulon A Genome-Wide Analysis of Transcription Factor Regulatory Regions , 2004, Cell.

[31]  A. Püschel,et al.  The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity , 2004, Nature Neuroscience.

[32]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[33]  Hyejin Kang,et al.  Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory , 2004, Cell.

[34]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[35]  Bruno Bozon,et al.  A Requirement for the Immediate Early Gene zif268 in Reconsolidation of Recognition Memory after Retrieval , 2003, Neuron.

[36]  E. Bacchelli,et al.  Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene , 2003, Molecular Psychiatry.

[37]  Konstantin Khrapko,et al.  A microRNA array reveals extensive regulation of microRNAs during brain development. , 2003, RNA.

[38]  Jerry H. Wang,et al.  Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors , 2003, Nature Neuroscience.

[39]  E. Neher,et al.  Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse , 2003, Nature.

[40]  P. Stork Does Rap1 deserve a bad Rap? , 2003, Trends in biochemical sciences.

[41]  T. Shibasaki,et al.  Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis. , 2002, The Journal of biological chemistry.

[42]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[43]  A. West,et al.  Calcium regulation of neuronal gene expression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  T. Bliss,et al.  A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories , 2001, Nature Neuroscience.

[45]  Barry J. Everitt,et al.  Rapid and selective induction of BDNF expression in the hippocampus during contextual learning , 2000, Nature Neuroscience.

[46]  T. Soderling,et al.  Postsynaptic protein phosphorylation and LTP , 2000, Trends in Neurosciences.

[47]  Markus Missler,et al.  SV2A and SV2B Function as Redundant Ca2+ Regulators in Neurotransmitter Release , 1999, Neuron.

[48]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[49]  A M Graybiel,et al.  A family of cAMP-binding proteins that directly activate Rap1. , 1998, Science.

[50]  A. Wittinghofer,et al.  Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP , 1998, Nature.

[51]  R. Nicoll,et al.  Contrasting properties of two forms of long-term potentiation in the hippocampus , 1995, Nature.

[52]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[53]  D. Stacey,et al.  Preferential inhibition of the oncogenic form of RasH by mutations in the GAP binding/“effector” domain , 1991, Cell.

[54]  E. Bacchelli,et al.  International molecular genetic study of autism consortium (IMGSAC). Towards identification of autism susceptibility variants in the IMGSAC sample , 2004 .

[55]  A. Wittinghofer,et al.  Structure and regulation of the cAMP-binding domains of Epac2 , 2003, Nature Structural Biology.

[56]  D Colquhoun,et al.  Mechanisms of activation of glutamate receptors and the time course of excitatory synaptic currents. , 1995, Annual review of physiology.