Methods of qualitative theory in nonlinear dynamics
暂无分享,去创建一个
[1] H. Poincaré,et al. Sur les courbes définies par les équations différentielles(III) , 1885 .
[2] I. Bendixson. Sur les courbes définies par des équations différentielles , 1901 .
[3] H. Dulac. Solutions d'un système d'équations différentielles dans le voisinage de valeurs singulières , 1912 .
[4] O. Perron,et al. Die Stabilitätsfrage bei Differentialgleichungen , 1930 .
[5] A. Denjoy,et al. Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .
[6] J. E. Littlewood,et al. On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .
[7] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[8] Shlomo Sternberg,et al. Local Contractions and a Theorem of Poincare , 1957 .
[9] Shlomo Sternberg,et al. On the Structure of Local Homeomorphisms of Euclidean n-Space, II , 1958 .
[10] M. Balinski. An algorithm for finding all vertices of convex polyhedral sets , 1959 .
[11] Kuo-Tsai Chen,et al. EQUIVALENCE AND DECOMPOSITION OF VECTOR FIELDS ABOUT AN ELEMENTARY CRITICAL POINT. , 1963 .
[12] P. Hartman. Ordinary Differential Equations , 1965 .
[13] S. Smale. Diffeomorphisms with Many Periodic Points , 1965 .
[14] L. P. Šil'nikov. ON A POINCARÉ-BIRKHOFF PROBLEM , 1967 .
[15] A. Kelley. The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .
[16] L. P. Šil'nikov,et al. A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .
[17] M. R. Herman,et al. Mesure de Lebesgue et Nombre de Rotation , 1977 .
[18] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[19] Leonid P Shilnikov,et al. ON SYSTEMS WITH A SADDLE-FOCUS HOMOCLINIC CURVE , 1987 .
[20] M. Shashkov. ON BIFURCATIONS OF SEPARATRIX CONTOURS WITH TWO SADDLES , 1992 .
[21] Leonid P Shilnikov,et al. SYSTEMS WITH A HOMOCLINIC CURVE OF MULTIDIMENSIONAL SADDLE-FOCUS TYPE, AND SPIRAL CHAOS , 1992 .
[22] Rabinder N Madan,et al. Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.
[23] Dmitry Turaev,et al. On models with non-rough Poincare´ homoclinic curves , 1993 .
[24] L. Shilnikov,et al. On Moduli of Systems with a Structurally Unstable Homoclinic POINCARÉ Curve , 1993 .
[25] O. B. Lykova,et al. On the reduction principle in the theory of stability of motion , 1993 .
[26] I. Bronšteǐn,et al. Smooth Invariant Manifolds and Normal Forms , 1994 .
[27] The C1 Brunovsky Hypothesis , 1994 .
[28] L. Shilnikov. CHUA’S CIRCUIT: RIGOROUS RESULTS AND FUTURE PROBLEMS , 1994 .
[29] Dmitry Turaev,et al. ON DIMENSION OF NON-LOCAL BIFURCATIONAL PROBLEMS , 1996 .
[30] Chai Wah Wu,et al. LORENZ EQUATION AND CHUA’S EQUATION , 1996 .
[31] Leon O. Chua,et al. ON THE GENERALITY OF THE UNFOLDED CHUA'S CIRCUIT , 1996 .
[32] L. Shilnikov,et al. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. , 1996, Chaos.
[33] Ale Jan Homburg,et al. Some global aspects of homoclinic bifurcations of vector fields , 1996 .
[34] Christian Mira. Chua's Circuit and the Qualitative Theory of Dynamical Systems , 1997 .
[35] V. Stepanov,et al. Qualitative theory of differential equations , 1960 .