Methods of qualitative theory in nonlinear dynamics

Structurally Stable Systems Bifurcations of Dynamical Systems The Behavior of Dynamical Systems on Stability Boundaries of Equilibrium States The Behavior of Dynamical Systems on Stability Boundaries of Periodic Trajectories Local Bifurcations on the Route Over Stability Boundaries Global Bifurcations at the Disappearance of a Saddle-Node Equilibrium States and Periodic Orbits Bifurcations of Homoclinic Loops of Saddle Equilibrium States Safe and Dangerous Boundaries.

[1]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .

[2]  I. Bendixson Sur les courbes définies par des équations différentielles , 1901 .

[3]  H. Dulac Solutions d'un système d'équations différentielles dans le voisinage de valeurs singulières , 1912 .

[4]  O. Perron,et al.  Die Stabilitätsfrage bei Differentialgleichungen , 1930 .

[5]  A. Denjoy,et al.  Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .

[6]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[7]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[8]  Shlomo Sternberg,et al.  Local Contractions and a Theorem of Poincare , 1957 .

[9]  Shlomo Sternberg,et al.  On the Structure of Local Homeomorphisms of Euclidean n-Space, II , 1958 .

[10]  M. Balinski An algorithm for finding all vertices of convex polyhedral sets , 1959 .

[11]  Kuo-Tsai Chen,et al.  EQUIVALENCE AND DECOMPOSITION OF VECTOR FIELDS ABOUT AN ELEMENTARY CRITICAL POINT. , 1963 .

[12]  P. Hartman Ordinary Differential Equations , 1965 .

[13]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[14]  L. P. Šil'nikov ON A POINCARÉ-BIRKHOFF PROBLEM , 1967 .

[15]  A. Kelley The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .

[16]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[17]  M. R. Herman,et al.  Mesure de Lebesgue et Nombre de Rotation , 1977 .

[18]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[19]  Leonid P Shilnikov,et al.  ON SYSTEMS WITH A SADDLE-FOCUS HOMOCLINIC CURVE , 1987 .

[20]  M. Shashkov ON BIFURCATIONS OF SEPARATRIX CONTOURS WITH TWO SADDLES , 1992 .

[21]  Leonid P Shilnikov,et al.  SYSTEMS WITH A HOMOCLINIC CURVE OF MULTIDIMENSIONAL SADDLE-FOCUS TYPE, AND SPIRAL CHAOS , 1992 .

[22]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[23]  Dmitry Turaev,et al.  On models with non-rough Poincare´ homoclinic curves , 1993 .

[24]  L. Shilnikov,et al.  On Moduli of Systems with a Structurally Unstable Homoclinic POINCARÉ Curve , 1993 .

[25]  O. B. Lykova,et al.  On the reduction principle in the theory of stability of motion , 1993 .

[26]  I. Bronšteǐn,et al.  Smooth Invariant Manifolds and Normal Forms , 1994 .

[27]  The C1 Brunovsky Hypothesis , 1994 .

[28]  L. Shilnikov CHUA’S CIRCUIT: RIGOROUS RESULTS AND FUTURE PROBLEMS , 1994 .

[29]  Dmitry Turaev,et al.  ON DIMENSION OF NON-LOCAL BIFURCATIONAL PROBLEMS , 1996 .

[30]  Chai Wah Wu,et al.  LORENZ EQUATION AND CHUA’S EQUATION , 1996 .

[31]  Leon O. Chua,et al.  ON THE GENERALITY OF THE UNFOLDED CHUA'S CIRCUIT , 1996 .

[32]  L. Shilnikov,et al.  Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. , 1996, Chaos.

[33]  Ale Jan Homburg,et al.  Some global aspects of homoclinic bifurcations of vector fields , 1996 .

[34]  Christian Mira Chua's Circuit and the Qualitative Theory of Dynamical Systems , 1997 .

[35]  V. Stepanov,et al.  Qualitative theory of differential equations , 1960 .