Color Vision: A Review from a Neurophysiological Perspective

Color vision is an extraordinary phenomenon not only for the beauty it bestows on the external world we perceive but also for the power it gives to organisms for exploring this world. Color vision has evolved to enhance wavelength differences between the reflectance of an object and its background in an environment where gradients of light energy are often minimal. Color vision is not concerned with analyzing the wavelength composition of light reflected from an object’s surface but with exposing an object in its background. That is why totally different wavelength combinations can produce identical colors (red and green mixtures match a spectrally different yellow) or why different colors can be produced by identical combinations of wavelengths (white objects can appear pink, pale green, or as other contrasting colors in the proper background). The colors we see in objects are those that best set them off from their background under the prevailing light conditions.

[1]  J. Krauskopf Effect of retinal image stabilization on the appearance of heterochromatic targets. , 1963, Journal of the Optical Society of America.

[2]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[3]  C. R. Michael,et al.  Projection patterns of single physiologically characterized optic tract fibres in cat , 1980, Nature.

[4]  W. Levick,et al.  Properties of rarely encountered types of ganglion cells in the cat's retina and on overall classification , 1974, The Journal of physiology.

[5]  A Kaneko,et al.  Neuronal architecture of on and off pathways to ganglion cells in carp retina. , 1977, Science.

[6]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[7]  I C Wood,et al.  An acquired color defect of the opponent-color system. , 1976, Investigative ophthalmology.

[8]  C. Guld,et al.  Spectral and orientation specificity of single cells in foveal striate cortex of the vervet monkey, Cercopithecus aethiops , 1977, The Journal of physiology.

[9]  C. M. Cicerone,et al.  Opponent-process additivity--I: red-green equilibria. , 1974, Vision research.

[10]  C. Stromeyer,et al.  Apparent saturation of blue-sensitive cones occurs at a color-opponent stage. , 1978, Science.

[11]  G Wald,et al.  Blue-blindness in the normal fovea. , 1967, Journal of the Optical Society of America.

[12]  P Gouras,et al.  The function of the midget cell system in primate color vision. , 1971, Vision research.

[13]  K. Nakatani,et al.  Effects of GABA on neuronal activities in the distal retina of the carp. , 1978, Sensory processes.

[14]  E. Zrenner,et al.  Color coding in primate retina , 1981, Vision Research.

[15]  Pieter Padmos,et al.  Increment spectral sensitivity and colour discrimination in the primate, studied by means of graded potentials from the striate cortex , 1975, Vision Research.

[16]  T Henderson,et al.  THE VERTEBRATE EYE , 1943, The British journal of ophthalmology.

[17]  C. R. Michael Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. , 1978, Journal of neurophysiology.

[18]  R. M. Boynton Human color vision , 1979 .

[19]  L W CHACKO,et al.  THE LAMINAR PATTERN OF THE LATERAL GENICULATE BODY IN THE PRIMATES , 1948, Journal of neurology, neurosurgery, and psychiatry.

[20]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[21]  P. Gouras,et al.  Spectral selectivity of cells and its dependence on slit length in monkey visual cortex. , 1980, Journal of neurophysiology.

[22]  Robert W. Hammon,et al.  Component analysis of the foveal local electroretinogram elicited with sinusoidal flicker , 1979, Vision Research.

[23]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[24]  G. Poggio,et al.  Spatial and chromatic properties of neurons subserving foveal and parafoveal vision in rhesus monkey , 1975, Brain Research.

[25]  E. Zrenner Influence of Stimulus Duration and Area on the Spectral Luminosity Function as Determined by Sensory and VECP Measurements , 1977 .

[26]  P. Padmos,et al.  Cone systems interaction in single neurons of the lateral geniculate nucleus of the macaque , 1975, Vision Research.

[27]  Ewald Hering Outlines of a theory of the light sense , 1964 .

[28]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  A. Kaneko Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina , 1970, The Journal of physiology.

[30]  P. Gouras,et al.  Identification of cone mechanisms in graded responses of foveal striate cortex , 1974, The Journal of physiology.

[31]  J. Lund,et al.  Monkey retinal ganglion cells: Morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique , 1975, The Journal of comparative neurology.

[32]  D. Hubel,et al.  Receptive fields of optic nerve fibres in the spider monkey , 1960, The Journal of physiology.

[33]  A. Kaneko,et al.  Physiological and morphological studies of signal pathways in the carp retina , 1981, Vision Research.

[34]  C. McCollough Color Adaptation of Edge-Detectors in the Human Visual System , 1965, Science.

[35]  G. Wald,et al.  Visual Pigments in Single Rods and Cones of the Human Retina , 1964, Science.

[36]  F. M. D. Monasterio Asymmetry of on- and off-pathways of blue-sensitive cones of the retina of macaques , 1979, Brain Research.

[37]  W. B. Marks,et al.  Visual Pigments of Single Primate Cones , 1964, Science.

[38]  J. Kaas,et al.  Evidence for the loss of X-cells of the retina after long-term ablation of visual cortex in monkeys , 1979, Brain Research.

[39]  C. R. Michael Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. , 1978, Journal of neurophysiology.

[40]  T. Iu Study of synaptic transmission between photoreceptor and horizontal cell by electric stimulations of the retina , 1968 .

[41]  C R Ingling,et al.  Red - Green Opponent Spectral Sensitivity: Disparity Between Cancellation and Direct Matching Methods , 1978, Science.

[42]  Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques , 1978, Vision Research.

[43]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[44]  A. Cowey Atrophy of Retinal Ganglion Cells after Removal of Striate Cortex in a Rhesus Monkey , 1974, Perception.

[45]  G. Brindley,et al.  The summation areas of human colour‐receptive mechanisms at increment threshold , 1954, The Journal of physiology.

[46]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[47]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[48]  P Gouras,et al.  Opponent‐colour cells in different layers of foveal striate cortex , 1974, The Journal of physiology.

[49]  D. G. Green The contrast sensitivity of the colour mechanisms of the human eye , 1968, The Journal of physiology.

[50]  T. Ogden Intraretinal slow potentials evoked by brain stimulation in the primate. , 1966, Journal of Neurophysiology.

[51]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[52]  H. Sperling,et al.  Photopic spectral sensitivity in the rhesus monkey. , 1967, Journal of the Optical Society of America.

[53]  R. Marrocco,et al.  Sustained and transient cells in monkey lateral geniculate nucleus: conduction velocites and response properties. , 1976, Journal of neurophysiology.

[54]  P. Gouras Symposium on Electrophysiology: Electroretinography: Some Basic Principles , 1970 .

[55]  S. Gruber CONES IN THE RETINA OF THE LEMON SHARK (NEGAPRION BREVIROSTRIS). , 1963, Vision research.

[56]  J. Mollon,et al.  Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis. , 1980, The Journal of physiology.

[57]  J. Bowmaker,et al.  Visual pigments of rods and cones in a human retina. , 1980, The Journal of physiology.

[58]  J. C. Meadows,et al.  Cerebral color blindness: An acquired defect in hue discrimination , 1979, Annals of neurology.

[59]  E. Zrenner,et al.  Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.

[60]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[61]  C. R. Michael,et al.  Columnar organization of color cells in monkey's striate cortex. , 1981, Journal of neurophysiology.

[62]  S. Schein,et al.  Protan‐like spectral sensitivity of foveal Y ganglion cells of the retina of macaque monkeys. , 1980, The Journal of physiology.

[63]  J. Mollon,et al.  A theory of theΠ1 andΠ3 color mechanisms of stiles , 1979, Vision Research.

[64]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  H. Sperling,et al.  Photopic Spectral Sensitivity in the Monkey: Methods for Determinilng, and Initial Results , 1965, Science.

[66]  V. Flyger,et al.  The Migration of Polar Bears , 1968 .

[67]  F. M. de Monasterio,et al.  Signals from blue cones in “red-green” opponent-colour ganglion cells of the macaque retina , 1979, Vision Research.

[68]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[69]  J. Mollon,et al.  Saturation of a retinal cone mechanism , 1977, Nature.

[70]  D. Blough,et al.  Photopic spectral sensitivity of macaque monkeys. , 1966 .

[71]  F. M. D. Monasterio Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978 .

[72]  London,et al.  The Lateral Geniculate Nucleus and Visual Histophysiology , 1954 .

[73]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[74]  E. J. Simon Two types of luminosity horizontal cells in the retina of the turtle , 1973, The Journal of physiology.

[75]  Deane B. Judd Color In Business Science and Industry , 1952 .

[76]  Peter H. Schiller,et al.  Lack of blue OFF-center cells in the visual system of the monkey , 1978, Brain Research.

[77]  N. Daw Colour‐coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli , 1968, The Journal of physiology.

[78]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[79]  B. Cragg The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. , 1969, Vision research.

[80]  W. Stell,et al.  Goldfish retina: functional polarization of cone horizontal cell dendrites and synapses , 1975, Science.

[81]  C. R. Ingling The spectral sensitivity of the opponent-color channels , 1977, Vision Research.

[82]  J. Mollon,et al.  An anomaly in the response of the eye to light of short wavelengths. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[83]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[84]  C. R. Michael Color-sensitive complex cells in monkey striate cortex. , 1978, Journal of neurophysiology.

[85]  F. M. D. Monasterio Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978 .

[86]  M. B. Bender,et al.  BOOK REVIEWS , 2003 .

[87]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[88]  P. Gouras,et al.  Responses of cells in foveal visual cortex of the monkey to pure color contrast. , 1979, Journal of neurophysiology.

[89]  J. Werner,et al.  Short-wave cone input to the red-green opponent channel , 1979, Vision Research.

[90]  W. A. Hagins,et al.  Dark current and photocurrent in retinal rods. , 1970, Biophysical journal.

[91]  R. Harwerth,et al.  Red-Green Cone Interactions in the Increment-Threshold Spectral Sensitivity of Primates , 1971, Science.

[92]  H Zwick,et al.  Is the rhesus protanomalous? , 1978, Modern problems in ophthalmology.

[93]  P. Padmos,et al.  Human and macaque blue cones studied with electroretinography. , 1973, Vision research.

[94]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[95]  D. G. Green,et al.  Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye. , 1969, Vision research.

[96]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[97]  W. Stell,et al.  Color‐specific interconnections of cones and horizontal cells in the retina of the goldfish , 1975, The Journal of comparative neurology.

[98]  H Ripps,et al.  Peroxidase uptake by photoreceptor terminals of the skate retina , 1976, The Journal of cell biology.

[99]  M. Fuortes,et al.  Interactions leading to horizontal cell responses in the turtle retina , 1974, The Journal of physiology.

[100]  P Gouras,et al.  Enchancement of luminance flicker by color-opponent mechanisms. , 1979, Science.

[101]  D. Tolhurst,et al.  Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[102]  N. Daw,et al.  Cat colour vision: evidence for more than one cone process , 1970, The Journal of physiology.

[103]  D. Jameson,et al.  An opponent-process theory of color vision. , 1957, Psychological review.

[104]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .

[105]  R. L. Valois Color Vision Mechanisms in the Monkey , 1960 .

[106]  S. Zeki,et al.  Functional specialization and binocular interaction in the visual areas of rhesus monkey prestriate cortex , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[107]  W. S. Stiles Mechanisms of colour vision : selected papers of W.S. Stiles ; with a new introductory essay , 1978 .

[108]  P Gouras,et al.  The effects of light‐adaptation on rod and cone receptive field organization of monkey ganglion cells , 1967, The Journal of physiology.

[109]  R. Weale Mechanisms of Colour Vision , 1979 .

[110]  P. Gouras,et al.  Responses of macaque ganglion cells to far violet lights , 1977, Vision Research.

[111]  H. K. Hartline,et al.  Physiology of Photoreceptor Organs , 1972, Handbook of Sensory Physiology.

[112]  P Gouras,et al.  Color and spatial specificity of single units in Rhesus monkey foveal striate cortex. , 1973, Journal of neurophysiology.

[113]  G S Brindley,et al.  The flicker fusion frequency of the blue‐sensitive mechanism of colour vision , 1966, The Journal of physiology.

[114]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[115]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[116]  R. L. Valois Analysis and coding of color vision in the primate visual system. , 1965 .

[117]  S. Sherman,et al.  X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 1976, Science.

[118]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[119]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[120]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[121]  P. Gouras Trichromatic Mechanisms in Single Cortical Neurons , 1970, Science.

[122]  G. Fishman,et al.  Loss of color vision and Stiles' II1 mechanism in a patient with cerebral infarction. , 1980, Journal of the Optical Society of America.

[123]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[124]  E. Warrington,et al.  Observations on colour agnosia , 1964, Journal of neurology, neurosurgery, and psychiatry.

[125]  P Gouras,et al.  Antidromic responses of orthodromically identified ganglion cells in monkey retina , 1969, The Journal of physiology.

[126]  M. Critchley Acquired anomalies of colour perception of central origin. , 1965, Brain : a journal of neurology.

[127]  James Clerk Maxwell,et al.  On the theory of compound colours, and the relations of the colours of the spectrum , 1993, Proceedings of the Royal Society of London.

[128]  H. Spinnler,et al.  Colour imperception in unilateral hemisphere-damaged patients. , 1970, Journal of neurology, neurosurgery, and psychiatry.

[129]  FOVEAL INCREMENT THRESHOLDS IN DARK ADAPTATION. , 1964, Journal of the Optical Society of America.

[130]  T. Tomita Electrophysiological study of the mechanisms subserving color coding in the fish retina. , 1965, Cold Spring Harbor symposia on quantitative biology.

[131]  E. MacNichol,et al.  RETINAL MECHANISMS FOR CHROMATIC AND ACHROMATIC VISION , 1958, Annals of the New York Academy of Sciences.

[132]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[133]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[134]  J. C. Meadows Disturbed perception of colours associated with localized cerebral lesions. , 1974, Brain : a journal of neurology.

[135]  D. Tolhurst,et al.  Concealed colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[136]  J. Tigges,et al.  Reciprocal point‐to‐point connections between parastriate and striate cortex in the squirrel monkey (Saimiri) , 1973, The Journal of comparative neurology.

[137]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[138]  J. Dowling,et al.  Effect of Magnesium on Horizontal Cell Activity in the Skate Retina , 1973, Nature.

[139]  S. Schacher,et al.  Uptake of horseradish peroxidase by frog photoreceptor synapses in the dark and the light , 1974, Nature.

[140]  R. L. Valois,et al.  Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. , 1974, Vision research.

[141]  David H. Krantz,et al.  Opponent process additivity—II. Yellow/blue equilibria and nonlinear models , 1975, Vision Research.

[142]  P. Gouras,et al.  Blue-sensitive cones of the cat produce a rodlike electroretinogram. , 1979, Investigative ophthalmology & visual science.

[143]  E. Yund,et al.  Responses of macaque lateral geniculate cells to luminance and color figures. , 1977, Sensory processes.

[144]  D. C. Essen,et al.  Visual areas of the mammalian cerebral cortex. , 1979 .

[145]  C. R. Michael Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. 3. Opponent color units. , 1968, Journal of neurophysiology.

[146]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[147]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[148]  R. Marc,et al.  Chromatic organization of primate cones. , 1977, Science.

[149]  E. Crosby,et al.  Evolution of the Forebrain , 1966, Springer US.