Causal temporal constraint networks for representing temporal knowledge

In this work we describe causal temporal constraint networks (CTCN) as a new computable model for representing temporal information and efficiently handling causality. The proposed model enables qualitative and quantitative temporal constraints to be established, introduces the representation of causal constraints, and suggests mechanisms for representing inexact temporal knowledge. The temporal handling of information is achieved by structuring the information in different interpretation contexts, linked to each other through an inference mechanism which obtains interpretations that are consistent with the original temporal information. In carrying out inferences, we take into account the temporal relationships between events, the possible inexactitude associated with the events, and the atemporal or static information which affects the interpretation pattern being considered. The proposed schema is illustrated with an application developed using the CommonKADS methodology.

[1]  Fahiem Bacchus,et al.  Planning for temporally extended goals , 1996, Annals of Mathematics and Artificial Intelligence.

[2]  Yang Xiang,et al.  A Probabilistic Framework for Cooperative Multi-Agent Distributed Interpretation and Optimization of Communication , 1996, Artif. Intell..

[3]  Roque Luís Marín Morales,et al.  Qué es el razonamiento temporal borroso , 1996 .

[4]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[5]  Johan van Benthem,et al.  The Logic of Time , 1983 .

[6]  A. Fernandez-Leal,et al.  A computable model for representing temporal knowledge and managing causality , 2006, MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference.

[7]  P. Pandurang Nayak,et al.  A Reactive Planner for a Model-based Executive , 1997, IJCAI.

[8]  Rina Dechter,et al.  Temporal reasoning with constraints , 1998 .

[9]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[10]  Eddie Schwalb,et al.  Temporal Constraints: A Survey , 1998, Constraints.

[11]  Angel Fernández Leal Aspectos temporales de la representación de conocimiento en el síndrome de apneas del sueño , 2006 .

[12]  Lynn Nadel,et al.  Encyclopedia of Cognitive Science , 2003 .

[13]  Roque Marín,et al.  Problemas de Satisfacción de Restricciones Temporales , 2003, Inteligencia Artif..

[14]  Itay Meiri,et al.  Combining Qualitative and Quantitative Constraints in Temporal Reasoning , 1991, Artif. Intell..

[15]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[16]  Donald Michie,et al.  Machine Intelligence 4 , 1970 .

[17]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[18]  Guus Schreiber,et al.  Knowledge Engineering and Management: The CommonKADS Methodology , 1999 .

[19]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[20]  Leslie Pack Kaelbling,et al.  A Situated View of Representation and Control , 1995, Artif. Intell..

[21]  Reinhard Gotzhein,et al.  Temporal Logic and Applications-A Tutorial , 1992, Comput. Networks ISDN Syst..

[22]  Nigel Shadbolt,et al.  Knowledge Engineering and Management , 2000 .

[23]  David P. Miller,et al.  Temporal reasoning , 1986, WSC '86.

[24]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .