Evolution of dietary diversity and a starvation driven cross-diffusion system as its singular limit

We rigorously prove the passage from a Lotka-Volterra reaction-diffusion system towards a cross-diffusion system at the fast reaction limit. The system models a competition of two species, where one species has a more diverse diet than the other. The resulting limit gives a cross-diffusion system of a starvation driven type. We investigate the linear stability of homogeneous equilibria of those systems and rule out the possibility of cross-diffusion induced instability (Turing instability). Numerical simulations are included which are compatible with the theoretical results.

[1]  E. Cho,et al.  Starvation Driven Diffusion as a Survival Strategy of Biological Organisms , 2013, Bulletin of mathematical biology.

[2]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[3]  D. Lamberton,et al.  Equations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces LP , 1987 .

[4]  M. Scheffer,et al.  Geometric Analysis of Ecological Models with Slow and Fast Processes , 2000, Ecosystems.

[5]  Esther S. Daus,et al.  About the entropic structure of detailed balanced multi-species cross-diffusion equations , 2018, Journal of Differential Equations.

[6]  B. Kooi,et al.  Analysis of a predator–prey model with specific time scales: a geometrical approach proving the occurrence of canard solutions , 2019, Journal of mathematical biology.

[7]  Z. Wen Turing instability and stationary patterns in a predator-prey systems with nonlinear cross-diffusions , 2013 .

[8]  H. Murakawa A relation between cross-diffusion and reaction-diffusion , 2011 .

[9]  Esther S. Daus,et al.  Global Existence Analysis of Cross-Diffusion Population Systems for Multiple Species , 2016, 1608.03696.

[10]  A. Moussa Some variants of the classical Aubin–Lions Lemma , 2014, 1401.7231.

[11]  Ansgar Jüngel,et al.  The boundedness-by-entropy method for cross-diffusion systems , 2015 .

[12]  Biological advection and cross-diffusion with parameter regimes , 2019, AIMS Mathematics.

[13]  F. Gantmacher,et al.  Applications of the theory of matrices , 1960 .

[14]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[15]  Ansgar Jüngel,et al.  Analysis of a parabolic cross-diffusion population model without self-diffusion , 2006 .

[16]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[17]  Evolution of Dispersal with Starvation Measure and Coexistence , 2016, Bulletin of mathematical biology.

[18]  Ayman Moussa,et al.  Persisting entropy structure for nonlocal cross-diffusion systems , 2021, Annales de la Faculté des sciences de Toulouse : Mathématiques.

[19]  Asymmetric dispersal and evolutional selection in two-patch system , 2020 .

[20]  B. Kooi,et al.  Modelling, singular perturbation and bifurcation analyses of bitrophic food chains. , 2018, Mathematical biosciences.

[21]  Esther S. Daus,et al.  Rigorous mean-field limit and cross-diffusion , 2018, Zeitschrift für angewandte Mathematik und Physik.

[22]  L. Desvillettes,et al.  About reaction–diffusion systems involving the Holling-type II and the Beddington–DeAngelis functional responses for predator–prey models , 2017, Nonlinear Differential Equations and Applications NoDEA.

[23]  Beomjun Choi,et al.  Diffusion of Biological Organisms: Fickian and Fokker-Planck Type Diffusions , 2019, SIAM J. Appl. Math..

[24]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[25]  L. Desvillettes,et al.  New results for triangular reaction cross diffusion system , 2014, 1408.5814.

[26]  Dieter Bothe,et al.  Cross-Diffusion Limit for a Reaction-Diffusion System with Fast Reversible Reaction , 2012 .

[27]  Ansgar Jungel,et al.  The boundedness-by-entropy principle for cross-diffusion systems , 2014, 1403.5419.

[28]  L. Desvillettes,et al.  On the Entropic Structure of Reaction-Cross Diffusion Systems , 2014, 1410.7377.

[29]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[30]  S. Méléard,et al.  Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium , 2013, Journal of Mathematical Biology.

[31]  Masayasu Mimura,et al.  Diffusion, Cross-diffusion and Competitive Interaction , 2006, Journal of mathematical biology.

[32]  C. Kuehn,et al.  On the influence of cross-diffusion in pattern formation , 2019, Journal of Computational Dynamics.

[33]  Esther S. Daus,et al.  Cross-diffusion systems and fast-reaction limits , 2017, Bulletin des Sciences Mathématiques.

[34]  Masayasu Mimura,et al.  A link between microscopic and macroscopic models of self-organized aggregation , 2012, Networks Heterog. Media.