Unveiling the anomalous atomic stacking and formation mechanisms of 1:3R precipitates in Sm2Co17-type magnets

[1]  Chengbao Jiang,et al.  Atomic-scale structure clarification of the planar Z phase and its influence on the magnetic properties in Sm(CoFeCuZr)z permanent magnets , 2022, Acta Materialia.

[2]  Yizhong Huang,et al.  Atomic-scale oxidation of a Sm2Co17-type magnet , 2021, Acta Materialia.

[3]  Yizhong Huang,et al.  Decomposition behavior in the early-stage oxidation of Sm2Co17-type magnets , 2021, Scripta Materialia.

[4]  R. Schäublin,et al.  Temperature dependence of magnetization processes in Sm(Co, Fe, Cu, Zr)z magnets with different nanoscale microstructures , 2021, 2101.12076.

[5]  X. Ren,et al.  Atomic scale understanding of the defects process in concurrent recrystallization and precipitation of Sm-Co-Fe-Cu-Zr alloys , 2021 .

[6]  Renjie Chen,et al.  Nanoscale short-range ordering induced cellular structure and microchemistry evolution in Sm2Co17-type magnets , 2020 .

[7]  T. Ma,et al.  Role of primary Zr-rich particles on microstructure and magnetic properties of 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets , 2020 .

[8]  Chengbao Jiang,et al.  The formation mechanism of 1:5H phase in Sm(Co, Fe, Cu, Zr)z melt-spun ribbons with high iron content , 2020 .

[9]  A. Yan,et al.  Zirconium content induced mitigation of mechanical anisotropy in 2:17 type SmCo magnets , 2020 .

[10]  J. M. D. Coey,et al.  Perspective and Prospects for Rare Earth Permanent Magnets , 2020, Engineering.

[11]  R. Schäublin,et al.  Unconventional magnetization textures and domain-wall pinning in Sm–Co magnets , 2019, Scientific Reports.

[12]  Dan Wu,et al.  Correlation between Fe content and z value in Sm(CobalFexCu0.06Zr0.025)z permanent magnets , 2019, Journal of Magnetism and Magnetic Materials.

[13]  Zai-xin Feng,et al.  Effect of Zr on magnetic properties and electrical resistivity of Sm(CobalFe0.09Cu0.09Zr )7.68 magnets , 2018, Journal of Alloys and Compounds.

[14]  Renjie Chen,et al.  The evolution of phase constitution and microstructure in iron-rich 2:17-type Sm-Co magnets with high magnetic performance , 2018, Scientific Reports.

[15]  L. Molina‐Luna,et al.  Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets , 2017, Nature Communications.

[16]  Thomas Schrefl,et al.  Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets , 2017 .

[17]  A. Yan,et al.  Mechanism of phase transformation in 2:17 type SmCo magnets investigated by phase stabilization , 2016 .

[18]  Huayu Zhao,et al.  High temperature oxidation and its induced coercivity loss of a 2:17 type SmCo-based magnet , 2015 .

[19]  M. Hagiwara,et al.  Effects of Solution Treated Temperature on the Structural and Magnetic Properties of Iron-Rich ${\rm Sm}({\rm CoFeCuZr})_{\rm Z}$ Sintered Magnet , 2013, IEEE Transactions on Magnetics.

[20]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[21]  Xiaoyan Song,et al.  Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy , 2011 .

[22]  Wei Li,et al.  Twinning structure in Sm(Co,Fe,Cu,Zr)z permanent magnet , 2010 .

[23]  A. Williams,et al.  The oxidation morphology of SmCo alloys , 2009 .

[24]  R. Gopalan,et al.  Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr.04)7.4 ribbons , 2009 .

[25]  F. Missell,et al.  Magnetic characterization of the (Zr,Sm)Co3 phase in Sm(CoFeCuZr)z magnets , 2007 .

[26]  Wei Li,et al.  Anisotropic fracture behavior of sintered rare-earth permanent magnets , 2005, IEEE Transactions on Magnetics.

[27]  T. Schrefl,et al.  Recent developments in hard magnetic bulk materials , 2004 .

[28]  Toshiyuki Koyama,et al.  The microstructure of sintered Sm (Co0.72Fe0.20Cu0.055Zr0.025) (7.5) permanent magnet studied by atom probe , 2004 .

[29]  G. Hadjipanayis,et al.  Evolution of microstructure, microchemistry and coercivity in 2.17 type Sm-Co magnets with heat treatment , 2001 .

[30]  G. Hadjipanayis,et al.  High temperature 2:17 magnets: relationship of magnetic properties to microstructure and processing , 2000 .

[31]  G. Hadjipanayis,et al.  High-temperature magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets , 2000 .

[32]  G. Hadjipanayis,et al.  Effect of Zr on the microstructure and magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets , 2000 .

[33]  J. Liu,et al.  Enhancement of the Curie temperature for exchange coupled Nd-Fe-B and Pr-Fe-B magnets , 1997 .

[34]  L. Rabenberg,et al.  Genesis of the cell microstructure in the Sm(Co, Fe, Cu, Zr) permanent magnets with 2:17 type , 1993 .

[35]  J. Fidler,et al.  Coercivity of precipitation hardened cobalt rare earth 17:2 permanent magnets , 1982 .

[36]  R. Mishra,et al.  Microstructures of precipitation‐hardened SmCo permanent magnets , 1982 .

[37]  Teruhiko Ojima,et al.  Magnetic properties of a new type of rare-earth cobalt magnets Sm 2 (Co, Cu, Fe, M) 17 , 1977 .

[38]  K. Buschow,et al.  Intermetallic compounds in the system samarium-cobalt , 1968 .