State complexity of basic operations on suffix-free regular languages

We investigate the state complexity of basic operations for suffix-free regular languages. The state complexity of an operation for regular languages is the number of states that are necessary and sufficient in the worst-case for the minimal deterministic finite-state automaton that accepts the language obtained from the operation. We establish the precise state complexity of catenation, Kleene star, reversal and the Boolean operations for suffix-free regular languages.

[1]  Jeffrey Shallit,et al.  Unary Language Operations, State Complexity and Jacobsthal's Function , 2002, Int. J. Found. Comput. Sci..

[2]  Sheng Yu,et al.  State Complexity of Regular Languages , 2001, J. Autom. Lang. Comb..

[3]  Cyril Nicaud,et al.  Average State Complexity of Operations on Unary Automata , 1999, MFCS.

[4]  Martin Kutrib,et al.  Nondeterministic Descriptional Complexity Of Regular Languages , 2003, Int. J. Found. Comput. Sci..

[5]  Derick Wood,et al.  On the state complexity of reversals of regular languages , 2004, Theor. Comput. Sci..

[6]  Sheng Yu,et al.  The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..

[7]  Michael Domaratzki,et al.  State Complexity of Proportional Removals , 2002, J. Autom. Lang. Comb..

[8]  Michael Domaratzki,et al.  State Complexity of Shuffle on Trajectories , 2002, DCFS.

[9]  J. Berstel,et al.  Theory of codes , 1985 .

[10]  Yo-Sub Han,et al.  State Complexity of Union and Intersection of Finite Languages , 2008, Int. J. Found. Comput. Sci..

[11]  Janusz A. Brzozowski,et al.  A Survey of Regular Expressions and Their Applications , 1962, IRE Trans. Electron. Comput..

[12]  Karel Culik,et al.  State Complexity of Basic Operations on Finite Languages , 1999, WIA.

[13]  Derick Wood,et al.  State Complexity of Prefix-Free Regular Languages , 2006, DCFS.

[14]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[15]  Martin Kutrib,et al.  Unary Language Operations and Their Nondeterministic State Complexity , 2002, Developments in Language Theory.

[16]  Jozef Jirásek,et al.  State Complexity of Concatenation and Complementation of Regular Languages , 2004, CIAA.

[17]  Derrick Wood,et al.  Theory of Computation: A Primer , 1987 .

[18]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[19]  Ernst L. Leiss,et al.  Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..

[20]  Sheng Yu,et al.  Tight Lower Bound for the State Complexity of Shuffle of Regular Languages , 2002, J. Autom. Lang. Comb..

[21]  Derick Wood,et al.  The generalization of generalized automata: expression automata , 2005, Int. J. Found. Comput. Sci..

[22]  Derick Wood,et al.  Theory of computation , 1986 .

[23]  Galina Jirásková,et al.  Union and Intersection of Regular Languages and Descriptional Complexity , 2005, DCFS.