Tobit model estimation and sliced inverse regression

It is not unusual for the response variable in a regression model to be subject to censoring or truncation. Tobit regression models are specific examples of such a situation, where for some observations the observed response is not the actual response, but the censoring value (often zero), and an indicator that censoring (from below) has occurred. It is well-known that the maximum likelihood estimator for such a linear model assuming Gaussian errors is not consistent if the error term is not homoscedastic and normally distributed. In this paper, we consider estimation in the Tobit regression context when homoscedasticity and normality of errors do not hold, as well as when the true response is an unspecified nonlinear function of linear terms, using sliced inverse regression (SIR). The properties of SIR estimation for Tobit models are explored both theoretically and based on extensive Monte Carlo simulations.We show that the SIR estimator is a strong competitor to other Tobit regression estimators, in that it has good properties when the usual linear model assumptions hold, and can be much more effective than other Tobit model estimators when those assumptions break down. An example related to household charitable donations demonstrates the usefulness of the SIR estimator.

[1]  Lexin Li,et al.  Cluster-based estimation for sufficient dimension reduction , 2004, Comput. Stat. Data Anal..

[2]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[3]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[4]  Lixing Zhu,et al.  Asymptotics of sliced inverse regression , 1995 .

[5]  Jeffrey S. Simonoff,et al.  A comparison of estimators for regression with a censored response variable , 1990 .

[6]  I. James,et al.  Linear regression with censored data , 1979 .

[7]  Arthur S. Goldberger,et al.  ABNORMAL SELECTION BIAS , 1983 .

[8]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[9]  R. Dennis Cook,et al.  A Model-Free Test for Reduced Rank in Multivariate Regression , 2003 .

[10]  R. Cook,et al.  Sufficient Dimension Reduction via Inverse Regression , 2005 .

[11]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[12]  Jane-Ling Wang,et al.  Dimension reduction for censored regression data , 1999 .

[13]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[14]  R. Cook,et al.  Optimal sufficient dimension reduction in regressions with categorical predictors , 2002 .

[15]  Chun-Houh Chen,et al.  CAN SIR BE AS POPULAR AS MULTIPLE LINEAR REGRESSION , 2003 .

[16]  Han Hong,et al.  Three-Step Censored Quantile Regression and Extramarital Affairs , 2002 .

[17]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[18]  P. Schmidt,et al.  Further evidence on the robustness of the Tobit estimator to heteroskedasticity , 1981 .

[19]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[20]  R. Cook On the Interpretation of Regression Plots , 1994 .

[21]  R. H. Moore,et al.  Regression Graphics: Ideas for Studying Regressions Through Graphics , 1998, Technometrics.

[22]  Bernd Fitzenberger,et al.  Computational aspects of censored quantile regression , 1997 .

[23]  R. Cook,et al.  Reweighting to Achieve Elliptically Contoured Covariates in Regression , 1994 .

[24]  R. Cook,et al.  Dimension reduction and graphical exploration in regression including survival analysis , 2003, Statistics in medicine.

[25]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[26]  M. L. Eaton A characterization of spherical distributions , 1986 .

[27]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[28]  Raymond J. Carroll,et al.  Binary Regressors In Dimension Reduction Models: A New Look At Treatment Comparisons , 1995 .

[29]  R. Cook,et al.  Dimension reduction for conditional mean in regression , 2002 .

[30]  Prasad A. Naik,et al.  Partial least squares estimator for single‐index models , 2000 .

[31]  P. Schmidt,et al.  An Investigation of the Robustness of the Tobit Estimator to Non-Normality , 1982 .

[32]  Thomas M. Stoker,et al.  Optimal bandwidth choice for density-weighted averages , 1996 .

[33]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[34]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[35]  Robert Brame,et al.  Tobit Models in Social Science Research , 2003 .

[36]  S. Yen,et al.  An econometric analysis of household donations in the USA , 2002 .

[37]  T. Amemiya Tobit models: A survey , 1984 .