Imaging Geographic Atrophy in Age-Related Macular Degeneration

Advances in retinal imaging technology have largely contributed to the understanding of the natural history, prognostic markers and disease mechanisms of geographic atrophy (GA) due to age-related macular degeneration. There is still no therapy available to halt or slow the disease process. In order to evaluate potential therapeutic effects in interventional trials, there is a need for precise quantification of the GA progression rate. Fundus autofluorescence imaging allows for accurate identification and segmentation of atrophic areas and currently represents the gold standard for evaluating progressive GA enlargement. By means of high-resolution spectral-domain optical coherence tomography, distinct microstructural alterations related to GA can be visualized.

[1]  Christian Ahlers,et al.  Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[2]  U. Mansmann,et al.  Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO) , 2005, BMC ophthalmology.

[3]  J. Kopitz,et al.  Inhibition of the ATP‐driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2‐E may contribute to the pathogenesis of age‐related macular degeneration , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  Steffen Schmitz-Valckenberg,et al.  High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. , 2008, Investigative ophthalmology & visual science.

[5]  William R. Freeman,et al.  Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy. , 2009, American journal of ophthalmology.

[6]  C Bellman,et al.  Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. , 2001, Investigative ophthalmology & visual science.

[7]  Jens Dreyhaupt,et al.  Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD. , 2006, Investigative ophthalmology & visual science.

[8]  F. Delori,et al.  Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. , 2006, Investigative ophthalmology & visual science.

[9]  Giovanni Gregori,et al.  Spectral domain optical coherence tomography imaging of dry age-related macular degeneration. , 2010, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[10]  Christian Simader,et al.  A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy. , 2011, Ophthalmology.

[11]  J. Kopitz,et al.  Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. , 2003, Investigative ophthalmology & visual science.

[12]  S. Sarks,et al.  Ageing and degeneration in the macular region: a clinico-pathological study. , 1976, The British journal of ophthalmology.

[13]  Usha Chakravarthy,et al.  Prevalence of age-related maculopathy in older Europeans: the European Eye Study (EUREYE). , 2006, Archives of ophthalmology.

[14]  C K Dorey,et al.  In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. , 1995, Investigative ophthalmology & visual science.

[15]  F. Holz,et al.  Topographie der Fundusautofluoreszenz mit einem neuen konfokalen Scanning-Laser-Ophthalmoskop , 1997, Der Ophthalmologe.

[16]  U. Schneider,et al.  Indocyanine green angiography and transmission defects. , 2009, Acta ophthalmologica Scandinavica.

[17]  T. Becker,et al.  CFH, C3 and ARMS2 Are Significant Risk Loci for Susceptibility but Not for Disease Progression of Geographic Atrophy Due to AMD , 2009, PloS one.

[18]  Aziz A. Khanifar,et al.  USE OF FUNDUS AUTOFLUORESCENCE IMAGES TO PREDICT GEOGRAPHIC ATROPHY PROGRESSION , 2011, Retina.

[19]  F W Fitzke,et al.  Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. , 1995, The British journal of ophthalmology.

[20]  P T de Jong,et al.  An international classification and grading system for age-related maculopathy and age-related macular degeneration , 1995 .

[21]  H Schatz,et al.  Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss. , 1989, Ophthalmology.

[22]  U. Mansmann,et al.  Concordance of disease progression in bilateral geographic atrophy due to AMD. , 2010, Investigative ophthalmology & visual science.

[23]  C. Bellmann,et al.  [Topography of fundus autofluorescence with a new confocal scanning laser ophthalmoscope]. , 1997, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[24]  W R Green,et al.  Age-related Macular Degeneration Histopathologic Studies: The 1992 Lorenz E. Zimmerman Lecture , 1993, Ophthalmology.

[25]  Christine Adrion,et al.  Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration. , 2010, Investigative ophthalmology & visual science.

[26]  P. Charbel Issa,et al.  In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration. , 2009, Investigative ophthalmology & visual science.

[27]  M. Boulton,et al.  RPE lipofuscin and its role in retinal pathobiology. , 2005, Experimental eye research.

[28]  J. Izatt,et al.  Spectral domain optical coherence tomography imaging of geographic atrophy margins. , 2009, Ophthalmology.

[29]  F. Holz,et al.  Analysis of digital scanning laser ophthalmoscopy fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[30]  Eyal Margalit,et al.  The long-term natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials. , 2007, Ophthalmology.

[31]  F. Holz,et al.  Bildgebende Diagnostik bei geographischer Atrophie , 2010, Der Ophthalmologe.

[32]  Michael Pircher,et al.  Three dimensional polarization sensitive OCT of human skin in vivo. , 2004, Optics express.

[33]  L. Feeney-Burns,et al.  Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. , 1984, Investigative ophthalmology & visual science.

[34]  M. Boulton,et al.  The role of the retinal pigment epithelium: Topographical variation and ageing changes , 2001, Eye.

[35]  Steffen Schmitz-Valckenberg,et al.  Fundus autofluorescence and progression of age-related macular degeneration. , 2009, Survey of ophthalmology.

[36]  J. Dreyhaupt,et al.  Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. , 2004, Investigative ophthalmology & visual science.

[37]  Ronald Klein,et al.  The epidemiology of progression of pure geographic atrophy: the Beaver Dam Eye Study. , 2008, American journal of ophthalmology.

[38]  Richard F Spaide,et al.  Fundus autofluorescence and age-related macular degeneration. , 2003, Ophthalmology.

[39]  William J Feuer,et al.  Spectral domain optical coherence tomographic imaging of geographic atrophy. , 2008, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[40]  Sebastian Wolf,et al.  Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. , 2008, Investigative ophthalmology & visual science.

[41]  R. Klein,et al.  The Fifteen–Year Incidence of Age–Related Macular Degeneration: The Beaver Dam Eye Study , 2006 .

[42]  Tunde Peto,et al.  Inter- and intra-observer variability in grading lesions of age-related maculopathy and macular degeneration , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[43]  S. Kim,et al.  Experimental approaches to the study of A2E, a bisretinoid lipofuscin chromophore of retinal pigment epithelium. , 2010, Methods in molecular biology.

[44]  Ronald Klein,et al.  Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. , 2007, Ophthalmology.

[45]  Shuliang Jiao,et al.  Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. , 2005, Optics express.

[46]  T. Sheidow,et al.  Prospective evaluation of digital non-stereo color fundus photography as a screening tool in age-related macular degeneration. , 2005, American journal of ophthalmology.

[47]  Frederick L Ferris,et al.  Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26. , 2009, Archives of ophthalmology.

[48]  K Struharova,et al.  Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. , 2012, Bratislavske lekarske listy.

[49]  F. Fitzke,et al.  Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging , 2010, British Journal of Ophthalmology.

[50]  S. Davies,et al.  Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. , 2000, Investigative ophthalmology & visual science.

[51]  Jens Dreyhaupt,et al.  Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. , 2007, American journal of ophthalmology.

[52]  J S Sunness,et al.  Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. , 1999, Ophthalmology.

[53]  Salvatore Grisanti,et al.  The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration , 2008, Progress in Retinal and Eye Research.

[54]  Monika Fleckenstein,et al.  Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high‐resolution, spectral‐domain optical coherence tomography , 2010, Acta ophthalmologica.

[55]  J S Sunness,et al.  Measuring geographic atrophy in advanced age-related macular degeneration. , 1999, Investigative ophthalmology & visual science.

[56]  U. Kellner,et al.  FUNDUS AUTOFLUORESCENCE (488 NM) AND NEAR-INFRARED AUTOFLUORESCENCE (787 NM) VISUALIZE DIFFERENT RETINAL PIGMENT EPITHELIUM ALTERATIONS IN PATIENTS WITH AGE-RELATED MACULAR DEGENERATION , 2010, Retina.

[57]  B. Lujan,et al.  Progression of geographic atrophy in age-related macular degeneration imaged with spectral domain optical coherence tomography. , 2011, Ophthalmology.

[58]  U. Schmidt-Erfurth,et al.  Human macula investigated in vivo with polarization-sensitive optical coherence tomography. , 2006, Investigative ophthalmology & visual science.

[59]  P. Walter,et al.  Fundus near infrared fluorescence correlates with fundus near infrared reflectance. , 2006, Investigative ophthalmology & visual science.

[60]  F W Fitzke,et al.  Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. , 1997, Investigative ophthalmology & visual science.

[61]  F. Ferris,et al.  Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium. , 2008, Investigative ophthalmology & visual science.

[62]  C. Keilhauer,et al.  Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration , 2005, British Journal of Ophthalmology.

[63]  The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the Age-Related Eye Disease Study Report Number 6. , 2001, American journal of ophthalmology.

[64]  Steffen Schmitz-Valckenberg,et al.  Evaluation of autofluorescence imaging with the scanning laser ophthalmoscope and the fundus camera in age-related geographic atrophy. , 2008, American journal of ophthalmology.

[65]  C. Keilhauer,et al.  IMAGING OF RETINAL AUTOFLUORESCENCE IN PATIENTS WITH AGE‐RELATED MACULAR DEGENERATION , 1997, Retina.