Prostate localization using transabdominal ultrasound imaging.

PURPOSE Adding margin around a target is done in an attempt to ensure complete coverage of the target. The B-mode acquisition and targeting (BAT) system allows ultrasound imaging of the prostate in patients with a full bladder. This provides a setup tool for patients with localized prostate cancer that takes into account real-time prostate position and may make it possible to decrease tumor margins. Prostate localization using the conventional setup verification method and daily isocenter shifts recommended by the ultrasound imaging system (BAT) were compared and analyzed. METHODS AND MATERIALS Daily treatment isocenter shifts for patients with localized adenocarcinoma of the prostate, obtained from two different imaging modalities, electronic portal imaging (EPI) and BAT, were calculated. We studied the difference in patient setup error calculated using BAT contour alignment and measured from EPI; the reproducibility of BAT contour alignment; intrafraction prostate motion; and how the BAT imaging procedure itself affected the prostate position. Prostate motion relative to its position during simulation was calculated by subtracting the EPI-measured isocenter shifts from the corresponding BAT-defined isocenter shifts. BAT reproducibility was measured by taking a verification BAT image after the patient was moved according to the initial BAT-defined isocenter shifts. Intrafraction prostate motion was measured by repeating BAT imaging at the end of a treatment fraction. The BAT imaging effect on prostate position was studied by examining the effect of suprapubic pressure on seed position in patients after a seed implant. RESULTS The mean BAT isocenter shifts for prostate motion were 0.32 +/- 0.46 cm in the lateral, 0.31 +/- 0.73 cm in the superoinferior, and 0.32 +/- 0.56 cm in the AP directions. Isocenter shifts obtained from EPI measurements were significantly smaller, with a mean of 0.05 +/- 0.24 cm in the lateral, 0.01 +/- 0.11 cm in the superoinferior and -0.11 +/- 0.29 cm in the AP directions. This larger shift seen by BAT was due to prostate motion. For BAT reproducibility, the results showed that for BAT verification images, 90% of the lateral shifts were <0.2 cm, 93% of the superoinferior shifts were <0.3 cm, and 83% of the AP shifts were <0.2 cm. The mean isocenter shift (intrafraction localization error) during patient treatment fraction was 0.02 +/- 0.28 cm in the lateral, 0.04 +/- 0.48 cm in the superoinferior, and 0.0 +/- 0.32 cm in the AP direction. The BAT procedure itself induced an average motion of 1 mm in the AP and superoinferior directions. CONCLUSIONS Prostate patient setup verification on the basis of bony anatomy position does not reflect the actual prostate position. BAT ultrasound target alignment provides a real-time prostate localization system that may make it possible to measure prostate position variations and reduce margins.

[1]  A. Hanlon,et al.  Ultrasound-based stereotactic guidance of precision conformal external beam radiation therapy in clinically localized prostate cancer. , 2000, Urology.

[2]  D. Low,et al.  A critical evaluation of the planning target volume for 3-D conformal radiotherapy of prostate cancer. , 1998, International journal of radiation oncology, biology, physics.

[3]  C. Coleman,et al.  Analysis of prostate and seminal vesicle motion , 1993 .

[4]  K Lam,et al.  Measurement of prostate movement over the course of routine radiotherapy using implanted markers. , 1995, International journal of radiation oncology, biology, physics.

[5]  D. Kuban,et al.  High-dose intensity modulated radiation therapy for prostate cancer , 2004, Current urology reports.

[6]  Evaluation of an ultrasoundguided prostate positioning system using implanted gold markers , 2002 .

[7]  J. Tsai,et al.  Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. , 2002, International journal of radiation oncology, biology, physics.

[8]  C. Pelizzari,et al.  Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. , 1995, International journal of radiation oncology, biology, physics.

[9]  S L Schoeppel,et al.  Treatment planning issues related to prostate movement in response to differential filling of the rectum and bladder. , 1991, International journal of radiation oncology, biology, physics.

[10]  Gary A Ezzell,et al.  Initial experience with ultrasound localization for positioning prostate cancer patients for external beam radiotherapy. , 2001, International journal of radiation oncology, biology, physics.

[11]  Shinichi Shimizu,et al.  Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions. , 2002, International journal of radiation oncology, biology, physics.

[12]  Lei Dong,et al.  Intrafraction prostate motion during IMRT for prostate cancer. , 2001, International journal of radiation oncology, biology, physics.

[13]  George Starkschall,et al.  Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. , 2002, International journal of radiation oncology, biology, physics.

[14]  J C Stroom,et al.  Internal organ motion in prostate cancer patients treated in prone and supine treatment position. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[15]  J Bijhold,et al.  Maximizing setup accuracy using portal images as applied to a conformal boost technique for prostatic cancer. , 1992, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[16]  Michael J. Zelefsky,et al.  High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. , 2002, International journal of radiation oncology, biology, physics.

[17]  D P Dearnaley,et al.  Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. , 1999, International journal of radiation oncology, biology, physics.

[18]  T E Schultheiss,et al.  A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. , 1999, International journal of radiation oncology, biology, physics.

[19]  G J Kutcher,et al.  Variation in prostate position quantitation and implications for three-dimensional conformal treatment planning. , 1997, International journal of radiation oncology, biology, physics.

[20]  J A Antolak,et al.  Prostate target volume variations during a course of radiotherapy. , 1998, International journal of radiation oncology, biology, physics.

[21]  M Wannenmacher,et al.  Combined error of patient positioning variability and prostate motion uncertainty in 3D conformal radiotherapy of localized prostate cancer. , 1996, International journal of radiation oncology, biology, physics.

[22]  T Haycocks,et al.  Positioning errors and prostate motion during conformal prostate radiotherapy using on-line isocentre set-up verification and implanted prostate markers. , 2001, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[23]  J Pouliot,et al.  Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: a clinical study. , 1997, International journal of radiation oncology, biology, physics.

[24]  Prostate localization in prostate IMRT, advantage of bat over daily EPID , 2001 .

[25]  P Kijewski,et al.  Analysis of prostate and seminal vesicle motion: implications for treatment planning. , 1996, International journal of radiation oncology, biology, physics.

[26]  Tanya M Powell,et al.  Independent prostate motion as measured by daily BAT ultrasound and electronic portal imaging , 2001 .

[27]  M van Herk,et al.  Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.