The impact of abandoned kaolin quarries on macromycetes (Fungi: Basidiomycota, Ascomycota), carabid beetle (Coleoptera: Carabidae), and spider (Araneae) assemblages

[1]  T. Teder,et al.  Artificial field defects: A low-cost measure to support arthropod diversity in arable fields , 2022, Agriculture, Ecosystems & Environment.

[2]  S. Dashevskaya,et al.  Fungal Perspective of Pine and Oak Colonization in Mediterranean Degraded Ecosystems , 2022 .

[3]  M. Konvička,et al.  Extremely Endangered Butterflies of Scattered Central European Dry Grasslands Under Current Habitat Alteration , 2021, Insect Systematics and Diversity.

[4]  E. Błońska,et al.  Deadwood, Soil and Carabid Beetle-Based Interaction Networks—An Initial Case Study from Montane Coniferous Forests in Poland , 2021, Forests.

[5]  Z. Elek,et al.  Individual movement of large carabids as a link for activity density patterns in various forestry treatments , 2021 .

[6]  W. D. de Vries,et al.  Farmland Fragmentation, Farmland Consolidation and Food Security: Relationships, Research Lapses and Future Perspectives , 2021 .

[7]  M. Nietupski,et al.  Ground beetles (Coleoptera; Carabidae) as an indicator of ongoing changes in forest habitats due to increased water retention , 2020, PeerJ.

[8]  L. Reeves,et al.  Conservation value of secondary forest habitats to endemic frugivorous butterflies at Mount Kanlaon, Negros Occidental, Philippines , 2020, Journal of Insect Conservation.

[9]  D. Russell,et al.  Bioindication in peatlands by means of multi-taxa indicators (Oribatida, Araneae, Carabidae, Vegetation) , 2020 .

[10]  Manju M. Gupta Arbuscular Mycorrhizal Fungi: The Potential Soil Health Indicators , 2020, Soil Biology.

[11]  A. Klein,et al.  Insect conservation in agricultural landscapes: An outlook for policy-relevant research , 2019 .

[12]  J. Růžičková,et al.  Habitat mosaic of gravel pit as a potential refuge for carabids: a case study from Central Europe , 2019 .

[13]  J. Růžičková,et al.  Habitat use of an endangered beetle Carabus hungaricus assessed via radio telemetry , 2019, Acta Zoologica Academiae Scientiarum Hungaricae.

[14]  P. Novák,et al.  Red List of Habitats of the Czech Republic , 2019, Ecological Indicators.

[15]  Yudou Wang,et al.  The behaviour of water on the surface of kaolinite with an oscillating electric field , 2019, RSC advances.

[16]  J. Gurevitch,et al.  Conventional land‐use intensification reduces species richness and increases production: A global meta‐analysis , 2019, Global change biology.

[17]  Elżbieta Sandurska,et al.  What features of sand quarries affect their attractiveness for bees? , 2019, Acta Oecologica.

[18]  J. Horák,et al.  Green desert?: Biodiversity patterns in forest plantations , 2019, Forest Ecology and Management.

[19]  M. H�k�� Habitat mosaic of gravel pit as a potential refuge for carabids: a case study from Central Europe , 2019 .

[20]  J. Qu,et al.  Fungal Community as a Bioindicator to Reflect Anthropogenic Activities in a River Ecosystem , 2018, Front. Microbiol..

[21]  J. Frouz,et al.  Influence of surface flattening on biodiversity of terrestrial arthropods during early stages of brown coal spoil heap restoration. , 2018, Journal of environmental management.

[22]  R. Kędzior,et al.  MEAN INDIVIDUAL BIOMASS (MIB) OF GROUND BEETLES (COLEOPTERA, CARABIDAE) AS INDICATOR OF SUCCESSION PROCESSES IN POSTINDUSTRIAL AREAS , 2018 .

[23]  J. Horák,et al.  Winners and losers in the wilderness: response of biodiversity to the abandonment of ancient forest pastures , 2018, Biodiversity and Conservation.

[24]  J. Starý,et al.  Development of kaolin production, reserves and processing in the Czech Republic in 1999–2015 , 2017 .

[25]  G. Tonkovich,et al.  Monitoring fungi in ecological restorations of coastal Indiana, U.S.A. , 2017 .

[26]  A. Jagodziński,et al.  Ectomycorrhizal Fungi: A Major Player in Early Succession , 2017 .

[27]  A. Jagodziński,et al.  Biodiversity of ectomycorrhizal fungi in surface mine spoil restoration stands in Poland – first time recorded, rare, and red-listed species , 2016 .

[28]  Markéta Hendrychová,et al.  Combination of reclaimed and unreclaimed sites is the best practice for protection of aculeate Hymenoptera species on brown coal spoil heaps , 2016, Journal of Insect Conservation.

[29]  E. Tizado,et al.  Terrestrial Arthropods in the Initial Restoration Stages of Anthracite Coal Mine Spoil Heaps in Northwestern Spain: Potential Usefulness of Higher Taxa as Restoration Indicators , 2016 .

[30]  J. Borovička,et al.  Value of old forest attributes related to cryptogam species richness in temperate forests: A quantitative assessment , 2015 .

[31]  M. Řezáč,et al.  Red List of Czech spiders: 3rd edition, adjusted according to evidence-based national conservation priorities , 2015, Biologia.

[32]  J. Lepš,et al.  Multivariate Analysis of Ecological Data using Canoco 5 , 2014 .

[33]  J. Frouz Soil Biota and Ecosystem Development in Post Mining Sites , 2013 .

[34]  M. Hejda,et al.  Local and landscape factors affecting communities of plants and diurnal Lepidoptera in black coal spoil heaps: Implications for restoration management , 2013 .

[35]  P. Heneberg,et al.  Sandpits provide critical refuge for bees and wasps (Hymenoptera: Apocrita) , 2013, Journal of Insect Conservation.

[36]  Jogeir N. Stokland,et al.  Biodiversity in dead wood. , 2012 .

[37]  R. Tropek Can periodically drained ponds have any potential for terrestrial arthropods conservation? - a pilot survey of spiders , 2012 .

[38]  V. Kowal,et al.  Edge effects of three anthropogenic disturbances on spider communities in Alberta’s boreal forest , 2012, Journal of Insect Conservation.

[39]  R. Butovsky Heavy metals in carabids (Coleoptera, Carabidae) , 2011, ZooKeys.

[40]  A. Schwerk,et al.  Model of succession in degraded areas based on carabid beetles (Coleoptera, Carabidae) , 2011, ZooKeys.

[41]  Tomas Kadlec,et al.  Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants , 2010 .

[42]  V. Hula,et al.  Spiders (Araneida) from the Lesní lom Quarry (Brno-Hády). , 2010 .

[43]  Jan Novák,et al.  Artificial sowing of endangered dry grassland species into disused basalt quarries , 2010 .

[44]  V. Hula,et al.  Species diversity of Carabidae (Coleoptera) in different succession stages of a limestone quarry Hády (Brno, Czech Republic). , 2010 .

[45]  S. S. Avgın,et al.  Ground beetles (Coleoptera: Carabidae) as bioindicators of human impact. , 2010 .

[46]  B. Šarapatka,et al.  Effects of Conversion to Organic Farming on Carabid Beetles (Carabidae) in Experimental Fields in the Czech Republic , 2008 .

[47]  K. Prach,et al.  Ecological analysis of the vegetation in a summer-drained fishpond , 1987, Folia geobotanica & phytotaxonomica.

[48]  M. Konvička,et al.  Can quarries supplement rare xeric habitats in a piedmont region? Spiders of the Blansky les Mts, Czech Republic , 2008 .

[49]  Akira Suzuki Fungal succession at different scales , 2007 .

[50]  J. Pearce,et al.  The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review , 2006 .

[51]  M. Konvička,et al.  Proximity of valuable habitats affects succession patterns in abandoned quarries , 2006 .

[52]  J. Niemelä,et al.  Ground beetles (Coleoptera: Carabidae) as bioindicators , 2003, Biodiversity & Conservation.

[53]  M. Eyre,et al.  Beetles (Coleoptera) on brownfield sites in England: An important conservation resource? , 2003, Journal of Insect Conservation.

[54]  M. Konvička,et al.  Limestone Quarries as Refuges for European Xerophilous Butterflies , 2003 .

[55]  C. Buddle Spiders (Araneae) associated with downed woody material in a deciduous forest in central Alberta, Canada , 2001 .

[56]  B. Goodger,et al.  The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  J. Niemelä Carabid beetles (Coleoptera: Carabidae) and habitat fragmentation: a review , 2001 .

[58]  G. Wiegleb,et al.  Spider colonization of former brown coal mining areas — time or structure dependent? ☆ , 2000 .

[59]  A. Canard,et al.  Spiders (Araneae) useful for pest limitation and bioindication , 1999 .

[60]  Chris van Swaay,et al.  Red data book of European butterflies [Rhopalocera] , 1999 .

[61]  P. Legendre,et al.  SPECIES ASSEMBLAGES AND INDICATOR SPECIES:THE NEED FOR A FLEXIBLE ASYMMETRICAL APPROACH , 1997 .

[62]  T. Churchill Spiders as ecological indicators: an overview for Australia , 1997 .

[63]  K. Hůrka Carabidae of the Czech and Slovak Republics. , 1996 .

[64]  U. Peintner,et al.  Survey of Heavy Metal Deposition at the Schulterberg (Achenkirch Altitude Profiles) by Using Basidiomycetes as Bioindicators , 1996 .

[65]  P. Mineau,et al.  The impact of agricultural practices on biodiversity , 1995 .

[66]  P. Pyšek,et al.  Spontaneous Establishment of Woody Plants in Central European Derelict Sites and their Potential for Reclamation , 1994 .

[67]  J. Thomas,et al.  Patterns, Mechanisms and Rates of Extinction among Invertebrates in the United Kingdom [and Discussion] , 1994 .

[68]  F. Fukarek Pflanzensoziologie , 1964 .

[69]  J. Braun-Blanquet,et al.  Pflanzensoziologie: Grundzuge der Vegetationskunde. , 1967 .

[70]  D. Lowrie The Ecological Succession of Spiders of the Chicago Area Dunes , 1948 .