Soil carbon dioxide efflux in pure and mixed stands of oak and beech

Total Soil Respiration (TSR) was measured in pure and mixed stands of oak and beech and was partitioned into two contributions using the forest floor removal technique: Mineral Soil Respiration (MSR) and Forest Floor Respiration (FFR). In addition, laboratory incubations of the forest floor and the Ah horizon were performed to evaluate the heterotrophic respiration and the DOC production of these horizons. The relationships between soil temperature and the various soil respiration contributions in the three stands were compared using Q10 functions. In situ, significant differences (α = 0,05) between stands were observed for the R10 parameter (respiration rate at 10 °C) of the TSR, MSR and FFR contributions, while only the temperature sensitivity (Q10) of TSR was significantly affected by stand composition. The effect of soil water content was only significant on MSR and followed different patterns according to stand composition. Under controlled conditions, the R10 of the forest floor and of the Ah horizon varied with stand composition and the Q10 of the forest floor decreased in the order: oak (2.27) > mixture (2.01) > beech (1.71).RésuméLa respiration totale du sol (RTS) a été mesurée en peuplements purs et mélangés de chêne et de hêtre et a été subdivisée en deux contributions en enlevant les couches holorganiques de certaines zones de mesure (RSM : respiration du sol minéral et RCH : respiration des couches holorganiques). De plus, des échantillons de couches holorganiques et d’horizon Ah ont été incubés en laboratoire pour évaluer la respiration hétérotrophique et la production de DOC de ces horizons. Des fonctions Q10 ont été utilisées pour comparer les trois peuplements au niveau de la réponse à la température des différentes contributions à RTS. In situ, des différences significatives (α = 0.05) entre peuplements ont été mises en évidence en ce qui concerne le paramètre R10 (flux à 10 °C) de toutes les contributions (RTS, RSM, RCH) et la sensibilité à la température (Q10) de RTS uniquement. L’effet de la teneur en eau du sol était seulement significatif sur RSM et variait en fonction de la composition spécifique du peuplement. En conditions contrôlées, le paramètre R10 des couches holorganiques et de l’horizon Ah était significativement influencé par la composition spécifique; la respiration hétérotrophique des couches holorganiques présentait une sensibilité à la température décroissant suivant l’ordre : chênaie (2,27) > mélange (2,01) > hêtraie (1,71).

[1]  Riccardo Valentini,et al.  Annual variation in soil respiration and its components in a coppice oak forest in Central Italy , 2002 .

[2]  Ü. Rannik,et al.  Productivity overshadows temperature in determining soil and ecosystem respiration across European forests , 2001 .

[3]  S. Linder,et al.  Feedback interactions between needle litter decomposition and rhizosphere activity , 2004, Oecologia.

[4]  W. Schlesinger,et al.  The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate , 1992 .

[5]  John Moncrieff,et al.  The dependence of soil CO2 efflux on temperature , 2001 .

[6]  E. Davidson,et al.  Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests , 2002 .

[7]  P. Högberg,et al.  Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year , 2003 .

[8]  A. Brown,et al.  Litter Fall, Leaf Production and the Effects of Defoliation by Tortrix Viridana in a Sessile Oak (Quercus Petraea) Woodland , 1966 .

[9]  V. Dantec,et al.  Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. , 2001, Tree physiology.

[10]  N. Edwards,et al.  Carbon Cycling in a Mixed Deciduous Forest Floor , 1977 .

[11]  D. Binkley,et al.  Impact of several common tree species of European temperate forests on soil fertility , 2002 .

[12]  L'humus sous toutes ses formes, première édition , 1995 .

[13]  D. Gansert Root respiration and its importance for the carbon balance of beech saplings (Fagus sylvatica L.) in a montane beech forest , 1994, Plant and Soil.

[14]  Richard D. Boone,et al.  Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest , 1993 .

[15]  N. Edwards Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor , 1975 .

[16]  Pasquale Tucci,et al.  Carlini and Plana on the Theory of the Moon and their Dispute with Laplace , 1999 .

[17]  C. Leuschner Water extraction by tree fine roots in the forest floor of a temperate Fagus-Quercus forest , 1998 .

[18]  D. Hertel,et al.  Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years , 2001 .

[19]  J. Cortez Field decomposition of leaf litters: relationships between decomposition rates and soil moisture, soil temperature and earthworm activity , 1998 .

[20]  Eville Gorham,et al.  Litter Production in Forests of the World , 1964 .

[21]  S. Gupta,et al.  Soil respiration in relation to abiotic factors, forest floor litter, root biomass and litter quality in forest ecosystems of Siwaliks in Northern India , 1989 .

[22]  C. Nys,et al.  Litter production in an Atlantic beech (Fagus sylvatica L.) time sequence , 2001 .

[23]  N. Buchmann,et al.  Large-scale forest girdling shows that current photosynthesis drives soil respiration , 2001, Nature.

[24]  J. Lloyd,et al.  On the temperature dependence of soil respiration , 1994 .

[25]  D. Binkley,et al.  Nutritional interactions in mixed species forests: a synthesis , 2001 .

[26]  P. Sollins,et al.  Continuous Measurement of Carbon Dioxide Evolution From Partitioned Forest Floor Components , 1973 .

[27]  K. Pilegaard,et al.  Large seasonal changes in Q10 of soil respiration in a beech forest , 2003 .

[28]  D. Binkley The influence of tree species on forest soils: processes and patterns , 1995 .

[29]  D. Epron,et al.  Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content , 1999 .

[30]  H. Asbjornsen,et al.  Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species , 1995, Plant and Soil.

[31]  Ivan A. Janssens,et al.  Assessing forest soil CO(2) efflux: an in situ comparison of four techniques. , 2000, Tree physiology.

[32]  Charles T. Garten,et al.  Separating root and soil microbial contributions to soil respiration: A review of methods and observations , 2000 .

[33]  Robert S. Cherry,et al.  The Q10 relationship of microbial respiration in a temperate forest soil , 1996 .

[34]  H. Laudelout,et al.  Kinetics of Carbon Dioxide Evolution in Relation to Microbial Biomass and Temperature , 1990 .

[35]  V. Dantec,et al.  Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems , 1999, Plant and Soil.

[36]  A. Ekblad,et al.  Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions , 2005, Oecologia.

[37]  Henry L. Gholz,et al.  Soil CO2 evolution in Florida slash pine plantations. II: Importance of root respiration , 1987 .

[38]  François Toutain,et al.  L'humus sous toutes ses formes , 2007 .

[39]  K. Nadelhoffer,et al.  Roots exert a strong influence on the temperature sensitivityof soil respiration , 1998, Nature.

[40]  R. Ceulemans,et al.  Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity , 2004 .

[41]  E. Davidson,et al.  Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest , 1998 .

[42]  George M. Woodwell,et al.  Biotic Feedbacks in the Warming of the Earth , 1998 .

[43]  Eric A. Davidson,et al.  On the variability of respiration in terrestrial ecosystems: moving beyond Q 10 , 2006 .

[44]  E. Davidson,et al.  On the variability of respiration in terrestrial ecosystems: moving beyond Q10 , 2006 .

[45]  J. Anderson Carbon Dioxide Evolution from Two Temperate, Deciduous Woodland Soils , 1973 .