Bayesian methods for assessing importance of effects.

In experimental data analysis when it conies to assessing the importance of effects of interest, 2 situations are commonly met. In Situation 1, asserting largeness is sought: "The effect is large in the population." In Situation 2, asserting smallness is sought: "The effect is small in the population." In both situations, as is well known, conventional significance testing is far from satisfactory. The claim of this article is that Bayesian inference is ideally suited to making adequate inferences. Specifically, Bayesian techniques based on "noninformative" priors provide intuitive interpretations and extensions of familiar significance tests. The use of Bayesian inference for assessing importance is discussed elementarily by comparing 2 treatments, then by addressing hypotheses in complex analysis of variance designs.

[1]  H. Scheffé The Analysis of Variance , 1960 .

[2]  Lyle D. Broemeling,et al.  Bayesian Analysis of Linear Models. , 1986 .

[3]  Ronald C. Serlin,et al.  Rational appraisal of psychological research and the good-enough principle. , 1993 .

[4]  P. Lachenbruch Statistical Power Analysis for the Behavioral Sciences (2nd ed.) , 1989 .

[5]  Jean-Marc Bernard Bayesian interpretation of frequentist procedures for a Bernoulli process , 1996 .

[6]  David J. Hand,et al.  Patterns in statistical strategy , 1986 .

[7]  J. L. Rogers,et al.  Using significance tests to evaluate equivalence between two experimental groups. , 1993, Psychological bulletin.

[8]  H. Rouanet,et al.  COMPARISON BETWEEN TREATMENTS IN A REPEATED‐MEASUREMENT DESIGN: ANOVA AND MULTIVARIATE METHODS , 1970 .

[9]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[10]  Jean-Marc Bernard,et al.  Statistique en sciences humaines : analyse inductive des données , 1990 .

[11]  Bruno Lecoutre,et al.  L'analyse bayésienne des comparaisons , 1984 .

[12]  J. Hoc,et al.  L'analyse planifiée des données en psychologie , 1983 .

[13]  J. L. Hodges,et al.  Testing the Approximate Validity of Statistical Hypotheses , 1954 .

[14]  Jacob Cohen,et al.  A power primer. , 1992, Psychological bulletin.

[15]  C. Borland,et al.  Effect Size , 2019, SAGE Research Methods Foundations.

[16]  David J. Hand,et al.  Deconstructing Statistical Questions , 1994 .

[17]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[18]  R. Fildes Journal of the Royal Statistical Society (B): Gary K. Grunwald, Adrian E. Raftery and Peter Guttorp, 1993, “Time series of continuous proportions”, 55, 103–116.☆ , 1993 .

[19]  Jacques Poitevineau,et al.  Distribution of Quadratic Forms of Multivariate Generalized Student Variables , 1992 .

[20]  Bayesian methods for the analysis of variance. , 1993 .

[21]  E. Ziegel,et al.  Artificial intelligence and statistics , 1986 .

[22]  Stanley Wasserman,et al.  A Handbook for Data Analysis in the Behavioral Sciences:@@@(Vol. 1) Statistical Issues@@@(Vol. 2) Methodological Issues. , 1994 .

[23]  Bruno Lecoutre,et al.  Specific inference in ANOVA: From significance tests to Bayesian procedures , 1983 .

[24]  Henry Rouanet,et al.  Model acceptability and the use of Bayes-Fiducial methods for validating models , 1978 .

[25]  Ronald C. Serlin,et al.  Rationality in psychological research: The good-enough principle. , 1985 .

[26]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[27]  Gideon Keren,et al.  A Handbook for data analysis in the behavioral sciences : methodological issues , 1993 .

[28]  Dato N.M. De Gruijter,et al.  Advances in psychological and educational measurement , 1976 .

[29]  D. Broom Biology of Behaviour: Mechanisms, Functions and Applications , 1981 .