Proteomics of Protein Secretion by Bacillus subtilis: Separating the “Secrets” of the Secretome

SUMMARY Secretory proteins perform a variety of important“ remote-control” functions for bacterial survival in the environment. The availability of complete genome sequences has allowed us to make predictions about the composition of bacterial machinery for protein secretion as well as the extracellular complement of bacterial proteomes. Recently, the power of proteomics was successfully employed to evaluate genome-based models of these so-called secretomes. Progress in this field is well illustrated by the proteomic analysis of protein secretion by the gram-positive bacterium Bacillus subtilis, for which ∼90 extracellular proteins were identified. Analysis of these proteins disclosed various“ secrets of the secretome,” such as the residence of cytoplasmic and predicted cell envelope proteins in the extracellular proteome. This showed that genome-based predictions reflect only∼ 50% of the actual composition of the extracellular proteome of B. subtilis. Importantly, proteomics allowed the first verification of the impact of individual secretion machinery components on the total flow of proteins from the cytoplasm to the extracellular environment. In conclusion, proteomics has yielded a variety of novel leads for the analysis of protein traffic in B. subtilis and other gram-positive bacteria. Ultimately, such leads will serve to increase our understanding of virulence factor biogenesis in gram-positive pathogens, which is likely to be of high medical relevance.

[1]  M. Sarvas,et al.  The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high‐level secretion , 1993, Molecular microbiology.

[2]  J. Tagg,et al.  Novel lantibiotics and their pre-peptides , 1996, Antonie van Leeuwenhoek.

[3]  J. Hansen,et al.  Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of, Sublancin 168, a Novel Lantibiotic Produced by Bacillus subtilis 168* , 1998, The Journal of Biological Chemistry.

[4]  R. Losick,et al.  Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics , 1993 .

[5]  Gunnar von Heijne,et al.  How signal sequences maintain cleavage specificity. , 1984 .

[6]  Martin Wiedmann,et al.  YidC mediates membrane protein insertion in bacteria , 2000, Nature.

[7]  Frens Pries,et al.  Selective Contribution of the Twin-Arginine Translocation Pathway to Protein Secretion in Bacillus subtilis * , 2002, The Journal of Biological Chemistry.

[8]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Yamane,et al.  Bacillus subtilis Histone-like Protein, HBsu, Is an Integral Component of a SRP-like Particle That Can Bind theAlu Domain of Small Cytoplasmic RNA* , 1999, The Journal of Biological Chemistry.

[10]  D. Dubnau,et al.  ComC is required for the processing and translocation of ComGC, a pilin‐like competence protein of Bacillus subtilis , 1995, Molecular microbiology.

[11]  S. Ehrlich,et al.  Functional Analysis of Bacterial Genes: A Practical Manual , 2001 .

[12]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[13]  M. Hecker,et al.  TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway* , 2000, The Journal of Biological Chemistry.

[14]  S. Bron,et al.  Evaluation of Bottlenecks in the Late Stages of Protein Secretion in Bacillus subtilis , 1999, Applied and Environmental Microbiology.

[15]  D. Dubnau Binding and transport of transforming DNA by Bacillus subtilis: the role of type-IV pilin-like proteins--a review. , 1997, Gene.

[16]  O. Økstad,et al.  Two‐dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon , 2002, Proteomics.

[17]  M. Hecker,et al.  Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics , 2002, Molecular Genetics and Genomics.

[18]  G. von Heijne Life and death of a signal peptide , 1998, Nature.

[19]  K. Devine,et al.  Copyright © 1998, American Society for Microbiology Lysis Genes of the Bacillus subtilis Defective Prophage PBSX , 1997 .

[20]  M. Ehrmann,et al.  A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein , 1999, Cell.

[21]  A. Driessen,et al.  Protein Targeting to the Bacterial Cytoplasmic Membrane , 1999, Microbiology and Molecular Biology Reviews.

[22]  P. Andersen,et al.  Mapping and identification of Mycobacterium tuberculosis proteins by two‐dimensional gel electrophoresis, microsequencing and immunodetection , 2000, Electrophoresis.

[23]  I. Poxton,et al.  The pathogenicity of Clostridium difficile. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[24]  J. Ghuysen,et al.  Binding site‐shaped repeated sequences of bacterial wall peptidoglycan hydrolases , 1994, FEBS letters.

[25]  G. von Heijne,et al.  Signal peptidases in prokaryotes and eukaryotes--a new protease family. , 1992, Trends in biochemical sciences.

[26]  Pascal F. Longchamp,et al.  Lytic enzymes associated with defective prophages of Bacillus subtilis: sequencing and characterization of the region comprising the N-acetylmuramoyl-L-alanine amidase gene of prophage PBSX. , 1994, Microbiology.

[27]  M. Hecker,et al.  Structure-Function Analysis of PrsA Reveals Roles for the Parvulin-like and Flanking N- and C-terminal Domains in Protein Folding and Secretion in Bacillus subtilis* , 2004, Journal of Biological Chemistry.

[28]  M. Pallen The ESAT-6/WXG100 superfamily -- and a new Gram-positive secretion system? , 2002, Trends in microbiology.

[29]  S. Bron,et al.  The Role of Lipoprotein Processing by Signal Peptidase II in the Gram-positive Eubacterium Bacillus subtilis , 1999, The Journal of Biological Chemistry.

[30]  S. Bron,et al.  SecDF of Bacillus subtilis, a Molecular Siamese Twin Required for the Efficient Secretion of Proteins* , 1998, The Journal of Biological Chemistry.

[31]  S. Bron,et al.  Thiol-Disulfide Oxidoreductases Are Essential for the Production of the Lantibiotic Sublancin 168* , 2002, The Journal of Biological Chemistry.

[32]  S. Bron,et al.  Signal peptide-dependent protein transport in Bacillus subtilis , 2000 .

[33]  S. Bron,et al.  A novel two‐component regulatory system in Bacillus subtilis for the survival of severe secretion stress , 2001, Molecular microbiology.

[34]  K. Namba,et al.  Structure of the core and central channel of bacterial flagella , 1989, Nature.

[35]  A. Seluanov,et al.  FtsY, the Prokaryotic Signal Recognition Particle Receptor Homologue, Is Essential for Biogenesis of Membrane Proteins* , 1997, The Journal of Biological Chemistry.

[36]  G. von Heijne Protein targeting signals. , 1990, Current opinion in cell biology.

[37]  Vincent A. Fischetti,et al.  Sorting of protein a to the staphylococcal cell wall , 1992, Cell.

[38]  T. Klaenhammer,et al.  Leaky Lactococcus Cultures That Externalize Enzymes and Antigens Independently of Culture Lysis and Secretion and Export Pathways , 2001, Applied and Environmental Microbiology.

[39]  Long-Fei Wu,et al.  Discrimination between SRP‐ and SecA/SecB‐dependent substrates involves selective recognition of nascent chains by SRP and trigger factor , 2000, The EMBO journal.

[40]  O. Schneewind,et al.  Target cell specificity of a bacteriocin molecule: a C‐terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. , 1996, The EMBO journal.

[41]  M. Marahiel,et al.  Cold shock stress-induced proteins in Bacillus subtilis , 1996, Journal of bacteriology.

[42]  Christophe Nguyen-The,et al.  Enterotoxigenic Profiles of Food-Poisoning and Food-Borne Bacillus cereus Strains , 2002, Journal of Clinical Microbiology.

[43]  J. García,et al.  Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. , 1986, European journal of biochemistry.

[44]  Matthias Müller,et al.  Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. , 2003, Molecular cell.

[45]  A. Bolhuis,et al.  Protein targeting by the twin-arginine translocation pathway , 2001, Nature Reviews Molecular Cell Biology.

[46]  G von Heijne,et al.  The structure of signal peptides from bacterial lipoproteins. , 1989, Protein engineering.

[47]  H. Kakeshita,et al.  srb: a Bacillus subtilis gene encoding a homologue of the alpha-subunit of the mammalian signal recognition particle receptor. , 1995, DNA research : an international journal for rapid publication of reports on genes and genomes.

[48]  M. Horwitz,et al.  High Extracellular Levels of Mycobacterium tuberculosis Glutamine Synthetase and Superoxide Dismutase in Actively Growing Cultures Are Due to High Expression and Extracellular Stability Rather than to a Protein-Specific Export Mechanism , 2001, Infection and Immunity.

[49]  D. Dubnau,et al.  The bdbDC Operon of Bacillus subtilisEncodes Thiol-disulfide Oxidoreductases Required for Competence Development* , 2002, The Journal of Biological Chemistry.

[50]  A. Driks,et al.  Secretion, Localization, and Antibacterial Activity of TasA, a Bacillus subtilis Spore-Associated Protein , 1999, Journal of bacteriology.

[51]  G von Heijne,et al.  How signal sequences maintain cleavage specificity. , 1984, Journal of molecular biology.

[52]  S. Bron,et al.  The eubacterial lipoprotein-specific (type II) signal peptidase , 2001 .

[53]  A. Pugsley The complete general secretory pathway in gram-negative bacteria. , 1993, Microbiological reviews.

[54]  S. H. Kaufmann,et al.  Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens , 1999, Molecular microbiology.

[55]  T. Samuelsson,et al.  YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly , 2001, FEBS letters.

[56]  S. Bron,et al.  Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome , 2000, Microbiology and Molecular Biology Reviews.

[57]  M. Laverdière,et al.  Group A Streptococcus invasive infections: a review. , 1997, Canadian journal of surgery. Journal canadien de chirurgie.

[58]  S. Mazmanian,et al.  An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A. Driessen,et al.  Differential Dependence of Levansucrase and α-Amylase Secretion on SecA (Div) during the Exponential Phase of Growth of Bacillus subtilis , 1999, Journal of bacteriology.

[60]  S. Bron,et al.  Complementary Impact of Paralogous Oxa1-like Proteins of Bacillus subtilis on Post-translocational Stages in Protein Secretion* , 2003, The Journal of Biological Chemistry.

[61]  Jon Beckwith,et al.  Protein Translocation in the Three Domains of Life: Variations on a Theme , 1997, Cell.

[62]  A. Economou Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme , 1998, Molecular microbiology.

[63]  K. Devine,et al.  YkdA and YvtA, HtrA-Like Serine Proteases inBacillus subtilis, Engage in Negative Autoregulation and Reciprocal Cross-Regulation of ykdA and yvtAGene Expression , 2001, Journal of bacteriology.

[64]  A. Economou Bacterial secretome: the assembly manual and operating instructions (Review) , 2002, Molecular membrane biology.

[65]  M. Akita,et al.  SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. , 1990, The Journal of biological chemistry.

[66]  Shin-Ichi Aizawa,et al.  Type III secretion systems and bacterial flagella: Insights into their function from structural similarities , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  J. Rood Virulence genes of Clostridium perfringens. , 1998, Annual review of microbiology.

[68]  H. Riezman The Ins and Outs of Protein Translocation , 1997, Science.

[69]  M. Tseng,et al.  A proteomic analysis of secreted proteins from xylan‐induced Bacillus sp. strain K‐1 , 2000, Electrophoresis.

[70]  U. Bläsi,et al.  Holins: form and function in bacteriophage lysis. , 1995, FEMS microbiology reviews.

[71]  J. Bernhardt,et al.  A comprehensive two‐dimensional map of cytosolic proteins of Bacillus subtilis , 2001, Electrophoresis.

[72]  S. Bron,et al.  The chemistry and enzymology of the type I signal peptidases , 1997, Protein science : a publication of the Protein Society.

[73]  T. Åkerlund,et al.  Proteins released during high toxin production in Clostridium difficile. , 2002, Microbiology.

[74]  D. Karamata,et al.  A periplasm in Bacillus subtilis , 1995, Journal of bacteriology.

[75]  A. Grossman,et al.  Biochemical and genetic characterization of a competence pheromone from B. subtilis , 1994, Cell.

[76]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[77]  D. Karamata,et al.  The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. , 1996, Microbiology.

[78]  S. Bron,et al.  Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. , 1998, Genes & development.

[79]  G. von Heijne The signal peptide. , 1990, The Journal of membrane biology.

[80]  A. Driessen,et al.  Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. , 2000, The Biochemical journal.

[81]  T. Yakushi,et al.  A new ABC transporter mediating the detachment of lipid-modified proteins from membranes , 2000, Nature Cell Biology.

[82]  Nicola Zamboni,et al.  Genome engineering reveals large dispensable regions in Bacillus subtilis. , 2003, Molecular biology and evolution.

[83]  M. Sarvas,et al.  A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export , 1991, Molecular microbiology.

[84]  G. von Heijne,et al.  YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase , 2000, The EMBO journal.

[85]  J. V. van Dijl,et al.  Active Lipoprotein Precursors in the Gram-positive EubacteriumLactococcus lactis * , 2003, The Journal of Biological Chemistry.

[86]  Anne de Jong,et al.  Protein transport pathways in Bacillus subtilis: a genome-based road map , 2001 .

[87]  S. Bron,et al.  Conserved Serine and Histidine Residues Are Critical for Activity of the ER-type Signal Peptidase SipW of Bacillus subtilis * , 2000, The Journal of Biological Chemistry.

[88]  M. Nakano,et al.  Molecular biology of antibiotic production in Bacillus. , 1990, Critical reviews in biotechnology.

[89]  S. Foster,et al.  The role of autolysins during vegetative growth of Bacillus subtilis 168. , 1998, Microbiology.

[90]  P. Model,et al.  Cell wall sorting signals in surface proteins of gram‐positive bacteria. , 1993, The EMBO journal.

[91]  S. Bron,et al.  The signal peptidase II (Isp) gene of Bacillus subtilis. , 1997, Microbiology.

[92]  A Elofsson,et al.  Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. , 1997, Protein engineering.

[93]  C. Harwood,et al.  Influence of a Cell-Wall-Associated Protease on Production of α-Amylase by Bacillus subtilis , 1998, Applied and Environmental Microbiology.

[94]  Takao Suzuki,et al.  Characterization of the Bacillus subtilis ywtD Gene, Whose Product Is Involved in γ-Polyglutamic Acid Degradation , 2003, Journal of bacteriology.

[95]  J. Sánchez-Puelles,et al.  Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases. , 1990, Gene.

[96]  V. Fischetti,et al.  α-Enolase, a Novel Strong Plasmin(ogen) Binding Protein on the Surface of Pathogenic Streptococci* , 1998, The Journal of Biological Chemistry.

[97]  J. Musser,et al.  Identification and Immunogenicity of Group AStreptococcus Culture Supernatant Proteins , 2000, Infection and Immunity.

[98]  S. Engelmann,et al.  Extracellular proteins of Staphylococcus aureus and the role of SarA and σB , 2001, Proteomics.

[99]  B. Kruijff,et al.  Lipid involvement in protein translocation in Escherichia coli , 1990, Molecular microbiology.

[100]  L. Gierasch,et al.  Conformations of signal peptides induced by lipids suggest initial steps in protein export. , 1986, Science.

[101]  O. Schneewind,et al.  Cell wall sorting of lipoproteins in Staphylococcus aureus , 1996, Journal of bacteriology.

[102]  L. Babe,et al.  Purification and biochemical analysis of WprA, a 52-kDa serine protease secreted by B. subtilis as an active complex with its 23-kDa propeptide. , 1998, Biochimica et biophysica acta.

[103]  S. Raghavan,et al.  Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[104]  M. Hecker,et al.  Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. , 2002, Journal of biotechnology.

[105]  A. Driessen,et al.  Translocation of proteins across the cell envelope of Gram-positive bacteria. , 2001, FEMS microbiology reviews.

[106]  M. Hecker,et al.  Stabilization of cell wall proteins in Bacillus subtilis: A proteomic approach , 2002, Proteomics.

[107]  J. Hansen,et al.  Role of the Leader and Structural Regions of Prelantibiotic Peptides as Assessed by Expressing Nisin-Subtilin Chimeras in Bacillus subtilis 168, and Characterization of their Physical, Chemical, and Antimicrobial Properties (*) , 1995, The Journal of Biological Chemistry.

[108]  P. Setlow,et al.  Identification and characterization of pbpA encoding Bacillus subtilis penicillin-binding protein 2A , 1997, Journal of bacteriology.

[109]  Jan Maarten van Dijl,et al.  A proteomic view on genome-based signal peptide predictions. , 2001, Genome research.

[110]  G. Vonheijne The signal peptide. , 1990 .

[111]  S. Bron,et al.  Cellular lysis in Bacillus subtilis; the affect of multiple extracellular protease deficiencies , 1999 .

[112]  S. Bron,et al.  Different Mechanisms for Thermal Inactivation of Bacillus subtilis Signal Peptidase Mutants* , 1999, The Journal of Biological Chemistry.

[113]  F. Kunst,et al.  Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg , 2004, Molecular and General Genetics MGG.

[114]  S. Foster Molecular analysis of three major wall‐associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two‐domain ligand‐binding protein , 1993, Molecular microbiology.

[115]  S. Mazmanian,et al.  Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[116]  S. Bron,et al.  Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Bacillus subtilis * , 1999, The Journal of Biological Chemistry.

[117]  A. Driessen,et al.  SecA Is Not Required for Signal Recognition Particle-mediated Targeting and Initial Membrane Insertion of a Nascent Inner Membrane Protein* , 1999, The Journal of Biological Chemistry.

[118]  H. Gresham,et al.  The genomic aspect of virulence, sepsis, and resistance to killing mechanisms in Staphylococcus aureus , 2002, Current infectious disease reports.

[119]  Jan Maarten van Dijl,et al.  A Novel Class of Heat and Secretion Stress-Responsive Genes Is Controlled by the Autoregulated CssRS Two-Component System of Bacillus subtilis , 2002, Journal of bacteriology.

[120]  C. Harwood,et al.  Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis. , 1998, Applied and environmental microbiology.

[121]  J. Sekiguchi,et al.  Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. , 1995, Microbiology.

[122]  O. Schneewind,et al.  Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. , 1995, Science.

[123]  R. Ye,et al.  Functional Production and Characterization of a Fibrin-Specific Single-Chain Antibody Fragment from Bacillus subtilis: Effects of Molecular Chaperones and a Wall-Bound Protease on Antibody Fragment Production , 2002, Applied and Environmental Microbiology.

[124]  S. Bron,et al.  Chaperone-like activities of the CsaA protein of Bacillus subtilis. , 2000, Microbiology.

[125]  D. Karamata,et al.  Overall protein content and induced enzyme components of the periplasm of Bacillus subtilis. , 1996, Microbial drug resistance.

[126]  M. Hecker,et al.  The extracellular proteome of Bacillus subtilis under secretion stress conditions , 2003, Molecular microbiology.

[127]  W. D. de Vos,et al.  Lantibiotics: biosynthesis, mode of action and applications. , 1999, Natural product reports.

[128]  D. Karamata,et al.  The lytE Gene of Bacillus subtilis 168 Encodes a Cell Wall Hydrolase , 1998, Journal of bacteriology.

[129]  Guy Plunkett,et al.  A new family of peptidyl-prolyl isomerases. , 1995, Trends in biochemical sciences.

[130]  S. Bron,et al.  Bacillus subtilis Contains Four Closely Related Type I Signal Peptidases with Overlapping Substrate Specificities , 1997, The Journal of Biological Chemistry.

[131]  A. Driessen,et al.  SecDFyajC forms a heterotetrameric complex with YidC , 2002, Molecular microbiology.

[132]  K. Yamane,et al.  Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh , 1993, Journal of bacteriology.

[133]  O. Schneewind,et al.  Targeting of muralytic enzymes to the cell division site of Gram‐positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus , 1998, The EMBO journal.

[134]  B. Dobberstein,et al.  Common Principles of Protein Translocation Across Membranes , 1996, Science.

[135]  P. Andersen,et al.  Two-Dimensional Electrophoresis for Analysis ofMycobacterium tuberculosis Culture Filtrate and Purification and Characterization of Six Novel Proteins , 1998, Infection and Immunity.

[136]  M. Hecker,et al.  Phosphate-starvation-inducible proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. , 1996, Microbiology.

[137]  Seung Ho Kim,et al.  A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two‐dimensional gel electrophoresis and zymography , 2002, Proteomics.

[138]  Koreaki Ito,et al.  The Sec protein-translocation pathway. , 2001, Trends in microbiology.

[139]  P. Setlow,et al.  Analysis of the peptidoglycan structure of Bacillus subtilis endospores , 1996, Journal of bacteriology.

[140]  M. Sarvas,et al.  Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the lgt gene , 1999, Molecular microbiology.

[141]  L. Randall,et al.  SecB, one small chaperone in the complex milieu of the cell , 2002, Cellular and Molecular Life Sciences CMLS.

[142]  S. Bron,et al.  The Potential Active Site of the Lipoprotein-specific (Type II) Signal Peptidase of Bacillus subtilis * , 1999, The Journal of Biological Chemistry.

[143]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[144]  D. Dubnau,et al.  Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis , 1998, Molecular microbiology.

[145]  C. Harwood,et al.  Cell Wall Structure, Synthesis, and Turnover , 1993 .

[146]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1999, The Journal of Biological Chemistry.

[147]  L. Tran,et al.  Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases , 1991, Journal of bacteriology.

[148]  M. Krönke,et al.  Identification of Staphylococcus aureus exotoxins by combined sodium dodecyl sulfate gel electrophoresis and matrix‐assisted laser desorption/ ionization‐time of flight mass spectrometry , 2002, Proteomics.

[149]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[150]  E. Ghelardi,et al.  Requirement of flhA for Swarming Differentiation, Flagellin Export, and Secretion of Virulence-Associated Proteins in Bacillus thuringiensis , 2002, Journal of bacteriology.

[151]  M. Sarvas,et al.  Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro‐sequences , 1993, Molecular microbiology.

[152]  S. Bron,et al.  Signal Peptide Peptidase- and ClpP-like Proteins ofBacillus subtilis Required for Efficient Translocation and Processing of Secretory Proteins* , 1999, The Journal of Biological Chemistry.

[153]  K. Yamane,et al.  Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. , 2000, Microbiology.

[154]  Michael Hecker,et al.  Phosphate Starvation-Inducible Proteins ofBacillus subtilis: Proteomics and Transcriptional Analysis , 2000, Journal of bacteriology.

[155]  D. Karamata,et al.  The N-acetylmuramoyl-L-alanine amidase encoded by the Bacillus subtilis 168 prophage SP beta. , 1998, Microbiology.

[156]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[157]  W. D. de Vos,et al.  Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. , 1994, The Journal of biological chemistry.

[158]  Sadie M. Johnson,et al.  Identification of Secreted Proteins ofMycobacterium tuberculosis by a Bioinformatic Approach , 2000, Infection and Immunity.

[159]  A. L. Sørensen,et al.  Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis , 1995, Infection and immunity.

[160]  C. Rosenow,et al.  Contribution of novel choline‐binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae , 1997, Molecular microbiology.

[161]  J. A. Newitt,et al.  The E. coli Signal Recognition Particle Is Required for the Insertion of a Subset of Inner Membrane Proteins , 1997, Cell.

[162]  M. Sarvas,et al.  The extracytoplasmic folding factor PrsA is required for protein secretion only in the presence of the cell wall in Bacillus subtilis. , 2003, Microbiology.

[163]  C. Rivolta,et al.  Subunit II of Bacillus subtilis Cytochromec Oxidase Is a Lipoprotein , 1999, Journal of bacteriology.

[164]  A. Grossman,et al.  Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. , 1995, Genes & development.