Multi-innovation extended stochastic gradient algorithm for multi-input multi-output controlled autoregressive moving average systems by using the filtering technique

In this paper, we extends the innovation vector to the innovation matrices and presents a filtering based multi-innovation extended stochastic gradient algorithm for multi-input multi-output controlled autoregressive moving average systems. The basic idea is using the filtering technique to transform a multivariable system into two identification models, then to identify the parameters of these two identification models interactively. The proposed multi-innovation identification algorithm can effectively improve the parameter estimation accuracy.

[1]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[2]  Jing Ma,et al.  Optimal linear estimators for multi-sensor stochastic uncertain systems with packet losses of both sides , 2015, Digit. Signal Process..

[3]  Ali Bechouche,et al.  Adaptive ac filter parameters identification for voltage-oriented control of three-phase voltage-source rectifiers , 2015, Int. J. Model. Identif. Control..

[4]  Feng Ding,et al.  Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model , 2015, Digit. Signal Process..

[5]  Fei Liu,et al.  H∞ Filtering for Discrete-Time Systems With Stochastic Incomplete Measurement and Mixed Delays , 2012, IEEE Trans. Ind. Electron..

[6]  Tao Tang,et al.  Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems , 2014, Appl. Math. Lett..

[7]  F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .

[8]  Feng Ding,et al.  Joint Estimation of States and Parameters for an Input Nonlinear State-Space System with Colored Noise Using the Filtering Technique , 2016, Circuits Syst. Signal Process..

[9]  Shu-Li Sun,et al.  H∞ filtering for networked linear systems with multiple packet dropouts and random delays , 2015, Digit. Signal Process..

[10]  D. Wang Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering , 2011 .

[11]  Feng Ding,et al.  Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises , 2009, Signal Process..

[12]  Feng Ding,et al.  Self-tuning control based on multi-innovation stochastic gradient parameter estimation , 2009, Syst. Control. Lett..

[13]  Feng Ding,et al.  Multi-innovation Extended Stochastic Gradient Algorithm and Its Performance Analysis , 2010, Circuits Syst. Signal Process..

[14]  Ju H. Park,et al.  Robust reliable dissipative filtering for networked control systems with sensor failure , 2014, IET Signal Process..

[15]  Wei Zhang,et al.  Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..

[16]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[17]  Henrique Marra Menegaz,et al.  A Systematization of the Unscented Kalman Filter Theory , 2015, IEEE Transactions on Automatic Control.

[18]  Baolin Liu,et al.  A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems , 2014, Appl. Math. Comput..

[19]  Feng Ding,et al.  Data Filtering-Based Multi-innovation Stochastic Gradient Algorithm for Nonlinear Output Error Autoregressive Systems , 2016, Circuits Syst. Signal Process..

[20]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[21]  Huijun Gao,et al.  Saturated Adaptive Robust Control for Active Suspension Systems , 2013, IEEE Transactions on Industrial Electronics.

[22]  F. Ding,et al.  Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique , 2015 .

[23]  Yongsong Xiao,et al.  Parameter estimation for nonlinear dynamical adjustment models , 2011, Math. Comput. Model..

[24]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[25]  Huiping Li,et al.  Robust H∞ filtering for nonlinear stochastic systems with uncertainties and Markov delays , 2012, Autom..

[26]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[27]  S. M. Ahmad,et al.  Linear and nonlinear system identification techniques for modelling of a remotely operated underwater vehicle , 2015, Int. J. Model. Identif. Control..

[28]  Yang Shi,et al.  l2–l∞ Filtering for Multirate Systems Based on Lifted Models , 2008 .

[29]  F. Ding,et al.  Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems , 2015 .