Performance of a class of multi-robot deploy and search strategies based on centroidal voronoi configurations

This article considers a class of deploy and search strategies for multi-robot systems and evaluates their performance. The application framework used is deployment of a system of autonomous mobile robots equipped with required sensors in a search space to gather information. The lack of information about the search space is modelled as an uncertainty density distribution. The agents are deployed to maximise single-step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for sequential deploy and search (SDS) and combined deploy and search (CDS) strategies. Completeness results are provided for both search strategies. The deployment strategy is analysed in the presence of constraints on robot speed and limit on sensor range for the convergence of trajectories with corresponding control laws responsible for the motion of robots. SDS and CDS strategies are compared with standard greedy and random search strategies on the basis of time taken to achieve reduction in the uncertainty density below a desired level. The simulation experiments reveal several important issues related to the dependence of the relative performances of the search strategies on parameters such as the number of robots, speed of robots and their sensor range limits.

[1]  Francesco Bullo,et al.  Esaim: Control, Optimisation and Calculus of Variations Spatially-distributed Coverage Optimization and Control with Limited-range Interactions , 2022 .

[2]  Debasish Ghose,et al.  Negotiation schemes for multi-agent cooperative search , 2009 .

[3]  Izhak Rubin,et al.  A framework and analysis for cooperative search using UAV swarms , 2004, SAC '04.

[4]  Boulat A. Bash,et al.  Exact Distributed Voronoi Cell Computation in Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[5]  飯田 耕司,et al.  Studies on the optimal search plan , 1988 .

[6]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[7]  Debasish Ghose,et al.  Automated Multi-Agent Search Using Centroidal Voronoi Configuration , 2011, IEEE Transactions on Automation Science and Engineering.

[8]  Israel A. Wagner,et al.  Efficient cooperative search of smart targets using UAV Swarms1 , 2008, Robotica.

[9]  Antonios Tsourdos,et al.  Co-operative unmanned aerial vehicle searching and mapping of complex obstacles using two-dimensional splinegon , 2010 .

[10]  Debasish Ghose,et al.  Self Assessment-Based Decision Making for Multiagent Cooperative Search , 2011, IEEE Transactions on Automation Science and Engineering.

[11]  Atsuo Suzuki,et al.  Locational optimization problems solved through Voronoi diagrams , 1997 .

[12]  Randal W. Beard,et al.  Multiple UAV exploration of an unknown region , 2009, Annals of Mathematics and Artificial Intelligence.

[13]  J. Fort,et al.  On the A.S. Convergence of the Kohonen Algorithm with a General Neighborhood Function , 1995 .

[14]  L. Stone Theory of Optimal Search , 1975 .

[15]  Mac Schwager,et al.  Distributed Coverage Control with Sensory Feedback for Networked Robots , 2006, Robotics: Science and Systems.

[16]  Panos M. Pardalos,et al.  Cooperative Control of Multiple Agents and Search Strategy , 2007 .

[17]  Dusan M. Stipanovic,et al.  Effective Coverage Control for Mobile Sensor Networks With Guaranteed Collision Avoidance , 2007, IEEE Transactions on Control Systems Technology.

[18]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[19]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[20]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[21]  D. Ghose,et al.  Search using multiple UAVs with flight time constraints , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Debasish Ghose,et al.  Multi-agent Search using Voronoi partitions , 2007 .

[23]  Mac Schwager,et al.  Decentralized, Adaptive Coverage Control for Networked Robots , 2009, Int. J. Robotics Res..

[24]  Henry Pfister Cooperative Control of Autonomous Vehicles Using Fuzzy Cognitive Maps , 2003 .

[25]  Debasish Ghose,et al.  Multi-agent search strategy based on centroidal Voronoi configuration , 2010, 2010 IEEE International Conference on Robotics and Automation.

[26]  Steven Y. Goldsmith,et al.  Exhaustive Geographic Search with Mobile Robots Along Space-Filling Curves , 1998, CRW.

[27]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[28]  Marios M. Polycarpou,et al.  Cooperative real-time search and task allocation in UAV teams , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[29]  Manolis A. Christodoulou,et al.  Convergence properties of a class of learning vector quantization algorithms , 1996, IEEE Trans. Image Process..

[30]  Marios M. Polycarpou,et al.  A cooperative search framework for distributed agents , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[31]  Timothy W. McLain,et al.  Multiple UAV cooperative search under collision avoidance and limited range communication constraints , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[32]  Lakhmi C. Jain,et al.  Multiple UAVs path planning algorithms: a comparative study , 2008, Fuzzy Optim. Decis. Mak..

[33]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[34]  Marios M. Polycarpou,et al.  Analysis of opportunistic method for cooperative search by mobile agents , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[35]  Haibo Jiang,et al.  Consensus of multi-agent linear dynamic systems via impulsive control protocols , 2011, Int. J. Syst. Sci..

[36]  E. Fernandez-Gaucherand,et al.  Cooperative control for UAV's searching risky environments for targets , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[37]  Marios M. Polycarpou,et al.  Decentralized Cooperative Search in UAV's Using Opportunistic Learning , 2002 .

[38]  H. Marquez Nonlinear Control Systems: Analysis and Design , 2003, IEEE Transactions on Automatic Control.

[39]  S. Pratt,et al.  Guidance and control for cooperative search , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[40]  Marios M. Polycarpou,et al.  Multi-UAV Cooperative Search Using an Opportunistic Learning Method , 2007 .

[41]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[42]  J. R. Weisinger,et al.  A survey of the search theory literature , 1991 .

[43]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[44]  D. Ghose,et al.  Multiple agent team theoretic decision-making for searching unknown environments , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[45]  James N. Eagle,et al.  Using multiple searchers in constrained‐path, moving‐target search problems , 1996 .