Preparation and properties enhancement of poly(lactic acid)/calcined‐seashell biocomposites for 3D printing applications

[1]  D. Trache,et al.  Preparation and characterization of Alfa fibers/graphene nanoplatelets hybrid for advanced applications , 2021 .

[2]  K. Khimeche,et al.  Effect of newly developed sintered seashell on the microhardness properties of biocomposites , 2021 .

[3]  F. R. Passador,et al.  Development and characterization of printable PLA / β‐TCP bioactive composites for bone tissue applications , 2021, Journal of Applied Polymer Science.

[4]  V. Rangari,et al.  Ecofriendly production of bioactive tissue engineering scaffolds derived from egg- and sea-shells , 2020 .

[5]  C. Shuai,et al.  A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold , 2020 .

[6]  Liang Zhao,et al.  Improvement of the addition amount and dispersion of hydroxyapatite in the poly(lactic acid) matrix by the compatibilizer-epoxidized soybean oil , 2020, Journal of Materials Research.

[7]  Xinyu Li,et al.  Anisotropy of poly(lactic acid)/carbon fiber composites prepared by fused deposition modeling , 2020 .

[8]  Qiangxian Wu,et al.  Effects of the special structure of bio‐based shell powder on the properties of shell‐polycaprolactone composite , 2020 .

[9]  Alejandro H. Espera,et al.  Advances in 3D printing of thermoplastic polymer composites and nanocomposites , 2019, Progress in Polymer Science.

[10]  Guoqun Zhao,et al.  Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability , 2019, Polymer.

[11]  L. Love,et al.  High modulus biocomposites via additive manufacturing: Cellulose nanofibril networks as “microsponges” , 2019, Composites Part B: Engineering.

[12]  SingamneniSarat,et al.  Biopolymer Alternatives in Pellet Form for 3D Printing by Extrusion , 2019, 3D Printing and Additive Manufacturing.

[13]  S. Gregori,et al.  Experimental Design of Sustainable 3D-Printed Poly(Lactic Acid)/Biobased Poly(Butylene Succinate) Blends via Fused Deposition Modeling , 2019, ACS Sustainable Chemistry & Engineering.

[14]  P. Cinelli,et al.  Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization , 2019, European Polymer Journal.

[15]  N. Chen,et al.  Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering , 2019, Composites Science and Technology.

[16]  S. Nandi,et al.  Marine organisms as a source of natural matrix for bone tissue engineering , 2019, Ceramics International.

[17]  H. K. Sezer,et al.  FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties , 2019, Journal of Manufacturing Processes.

[18]  M. Brandt,et al.  Cork–PLA composite filaments for fused deposition modelling , 2018, Composites Science and Technology.

[19]  T. Tábi,et al.  Effect of D‐lactide content of annealed poly(lactic acid) on its thermal, mechanical, heat deflection temperature, and creep properties , 2018, Journal of Applied Polymer Science.

[20]  Amir Ameli,et al.  Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices. , 2018, ACS applied materials & interfaces.

[21]  P. Potiyaraj,et al.  Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites , 2018 .

[22]  Xiaofeng Wang,et al.  Effects of MCC Content on the Structure and Performance of PLA/MCC Biocomposites , 2018, Journal of Polymers and the Environment.

[23]  M. Collins,et al.  Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing , 2018 .

[24]  Anwarul Haque,et al.  Tensile properties, void contents, dispersion and fracture behaviour of 3D printed carbon nanofiber reinforced composites , 2018 .

[25]  Dagmar R. D’hooge,et al.  Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly(lactic acid) filaments into 3D printed materials? , 2018 .

[26]  S. Duquesne,et al.  Characterization of bio‐filler derived from seashell wastes and its effect on the mechanical, thermal, and flame retardant properties of ABS composites , 2017 .

[27]  M. Aydın,et al.  Effects of micro particle reinforcement on mechanical properties of 3D printed parts , 2017 .

[28]  Ilker S. Bayer,et al.  Cocoa Shell Waste Biofilaments for 3D Printing Applications , 2017 .

[29]  Pardeep Singh,et al.  Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing a H2O2/ZnWO4/CaO catalytic system , 2017 .

[30]  P. Shiakolas,et al.  Poly-l-lactic Acid: Pellets to Fiber to Fused Filament Fabricated Scaffolds, and Scaffold Weight Loss Study , 2017 .

[31]  Joshua M. Pearce,et al.  Tensile strength of commercial polymer materials for fused filament fabrication 3D printing , 2017 .

[32]  O. S. Gefle,et al.  Poly(lactic acid)-based polymer composites with high electric and thermal conductivity and their characterization , 2017 .

[33]  S. Vinodh,et al.  A review on composite materials and process parameters optimisation for the fused deposition modelling process , 2017 .

[34]  Esposito Corcione Carola,et al.  低コスト溶融堆積モデリング3Dプリンタを用いた印刷ポリ乳酸ナノヒドロキシアパタイト複合材料の実現可能性【Powered by NICT】 , 2017 .

[35]  R. Benavente,et al.  Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis. , 2017, Journal of the mechanical behavior of biomedical materials.

[36]  Brett Paull,et al.  Recent developments in 3D printable composite materials , 2016 .

[37]  Robert Langer,et al.  Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. , 2016, Advanced drug delivery reviews.

[38]  Harwinder Singh,et al.  Development of rapid tooling using fused deposition modeling: a review , 2016 .

[39]  H. Naguib,et al.  Study on the morphological, dynamic mechanical and thermal properties of PLA carbon nanofibre composites , 2016 .

[40]  D. Schubert,et al.  Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration , 2016 .

[41]  I. G. Lesci,et al.  Bioceramics and Biocomposites from Marine Sources , 2016 .

[42]  A. Jukić,et al.  Influence of inorganic fillers on PLA crystallinity and thermal properties , 2015, Journal of Thermal Analysis and Calorimetry.

[43]  Xiangling Ji,et al.  Molecular chain heterogeneity of a branched polyethylene resin using cross-fractionation techniques , 2015, Journal of Polymer Research.

[44]  Y. Nie Strain-induced crystallization of natural rubber/zinc dimethacrylate composites studied using synchrotron X-ray diffraction and molecular simulation , 2015, Journal of Polymer Research.

[45]  S. Danov,et al.  Improving methods of CaO transesterification activity , 2014 .

[46]  H. Naguib,et al.  Processing and properties of melt spun polylactide–multiwall carbon nanotube fiber composites , 2014 .

[47]  E. Darezereshki,et al.  Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method , 2014 .

[48]  Se-Kwon Kim Marine Biomaterials : Characterization, Isolation and Applications , 2013 .

[49]  Sang Bong Lee,et al.  Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties , 2012 .

[50]  M. Ghiasi,et al.  Synthesis of CaCO3 nanoparticles via citrate method and sequential preparation of CaO and Ca(OH)2 nanoparticles , 2012 .

[51]  Chenze Qi,et al.  Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders , 2009 .

[52]  M. Rodriguez-Garcia,et al.  Characterization of Calcium Carbonate, Calcium Oxide, and Calcium Hydroxide as Starting Point to the Improvement of Lime for Their Use in Construction , 2009 .

[53]  H. Yano,et al.  The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites , 2009 .

[54]  Masatoshi Matsuda,et al.  Crystallization and Melting Behavior of Poly (l-lactic Acid) , 2007 .

[55]  G. Boiteux,et al.  Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties , 2007 .

[56]  Joo L. Ong,et al.  Bioceramics for Tissue Engineering Applications-A Review , 2006 .

[57]  C. Telli,et al.  A new method for the solid-state synthesis of tetracalcium phosphate, a dental cement: X-ray powder diffraction and IR studies , 1997 .