The tepary bean genome provides insight into evolution and domestication under heat stress

[1]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[2]  Q. Jia,et al.  The Function of Inositol Phosphatases in Plant Tolerance to Abiotic Stress , 2019, International journal of molecular sciences.

[3]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[4]  H. Liu,et al.  Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. , 2019, Molecular plant.

[5]  X. Liang,et al.  A domestication-associated reduction in K+ -preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. , 2019, The New phytologist.

[6]  S. Shu,et al.  The genome of cowpea (Vigna unguiculata [L.] Walp.) , 2019, bioRxiv.

[7]  Jiapeng Fang,et al.  Na+/K+ Balance and Transport Regulatory Mechanisms in Weedy and Cultivated Rice (Oryza sativa L.) Under Salt Stress , 2018, BMC Plant Biology.

[8]  A. Jarvis,et al.  Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa , 2018, Scientific Reports.

[9]  P. McClean,et al.  Genetic Analysis of Victorin Sensitivity and Identification of a Causal Nucleotide-Binding Site Leucine-Rich Repeat Gene in Phaseolus vulgaris. , 2018, Molecular plant-microbe interactions : MPMI.

[10]  J. Flowers,et al.  Origins and geographic diversification of African rice (Oryza glaberrima) , 2018, bioRxiv.

[11]  V. Thareau,et al.  Common Bean Subtelomeres Are Hot Spots of Recombination and Favor Resistance Gene Evolution , 2018, Front. Plant Sci..

[12]  P. Miklas,et al.  White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment) gene. , 2018, The New phytologist.

[13]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[14]  Korbinian Schneeberger,et al.  findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies , 2018, Bioinform..

[15]  S. Signorelli,et al.  Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? , 2017, Annals of botany.

[16]  Feng Luo,et al.  MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads , 2017, Nature Methods.

[17]  M. Grusak,et al.  Nutritional composition and cooking characteristics of tepary bean (Phaseolus acutifolius Gray) in comparison with common bean (Phaseolus vulgaris L.) , 2017, Genetic Resources and Crop Evolution.

[18]  K. Bett,et al.  Successful Introgression of Abiotic Stress Tolerance from Wild Tepary Bean to Common Bean , 2017 .

[19]  Alexander Lex,et al.  UpSetR: an R package for the visualization of intersecting sets and their properties , 2017, bioRxiv.

[20]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[21]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[22]  Andrea Califano,et al.  ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information , 2016, Bioinform..

[23]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[24]  A. Sharpe,et al.  Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping , 2016, BMC Genomics.

[25]  G. Smyth,et al.  ROBUST HYPERPARAMETER ESTIMATION PROTECTS AGAINST HYPERVARIABLE GENES AND IMPROVES POWER TO DETECT DIFFERENTIAL EXPRESSION. , 2016, The annals of applied statistics.

[26]  Jonathan D. G. Jones,et al.  Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens , 2016, BMC Biology.

[27]  T. Kroj,et al.  Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread , 2016, The New phytologist.

[28]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[29]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[30]  M. Koch,et al.  A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN] , 2015, Plant Cell.

[31]  S. Magallón,et al.  A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.

[32]  Jonathan D. G. Jones,et al.  A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors , 2015, Cell.

[33]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[34]  M. Yandell,et al.  Genome Annotation and Curation Using MAKER and MAKER‐P , 2014, Current protocols in bioinformatics.

[35]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[36]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[37]  Mark Zander,et al.  TGA Transcription Factors Activate the Salicylic Acid-Suppressible Branch of the Ethylene-Induced Defense Program by Regulating ORA59 Expression1[C][W] , 2014, Plant Physiology.

[38]  Rod A Wing,et al.  A reference genome for common bean and genome-wide analysis of dual domestications , 2014, Nature Genetics.

[39]  Cathy H. Wu,et al.  Activities at the Universal Protein Resource (UniProt) , 2014, Nucleic Acids Research.

[40]  Shelby L. Bidwell,et al.  An improved genome release (version Mt4.0) for the model legume Medicago truncatula , 2014, BMC Genomics.

[41]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[42]  P. van Dijck,et al.  Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants , 2014, Front. Plant Sci..

[43]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[44]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[45]  Ge Gao,et al.  PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors , 2013, Nucleic Acids Res..

[46]  Mira V. Han,et al.  Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. , 2013, Molecular biology and evolution.

[47]  S. Jackson,et al.  Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change , 2013 .

[48]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[49]  S. Eddy,et al.  Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions , 2013, Nucleic acids research.

[50]  R. Terauchi,et al.  The Rice Resistance Protein Pair RGA4/RGA5 Recognizes the Magnaporthe oryzae Effectors AVR-Pia and AVR1-CO39 by Direct Binding[W][OA] , 2013, Plant Cell.

[51]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[52]  P. Gepts,et al.  Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris). , 2012, Annals of botany.

[53]  S. Magazù,et al.  Bio-protective effects of homologous disaccharides on biological macromolecules , 2012, European Biophysics Journal.

[54]  P. Gepts,et al.  The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1 , 2012, Theoretical and Applied Genetics.

[55]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[56]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[57]  Huanming Yang,et al.  Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers , 2011, Nature Biotechnology.

[58]  A. Jarvis,et al.  Genetic improvement of common beans and the challenges of climate change. , 2011 .

[59]  Jerry L. Hatfield,et al.  Crop Adaptation to Climate Change , 2011 .

[60]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[61]  C. Baudouin,et al.  Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology , 2011, Clinical ophthalmology.

[62]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[63]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[64]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[65]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[66]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[67]  S. Cannon,et al.  A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean1[W] , 2009, Plant Physiology.

[68]  J. Qu,et al.  Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis. , 2009, Experimental eye research.

[69]  C. Gutiérrez The Arabidopsis Cell Division Cycle , 2009, The arabidopsis book.

[70]  P. Hummelen,et al.  Early genomic responses to salicylic acid in Arabidopsis , 2009, Plant Molecular Biology.

[71]  Nobuhiro Suzuki,et al.  The Transcriptional Co-activator MBF1c Is a Key Regulator of Thermotolerance in Arabidopsis thaliana* , 2008, Journal of Biological Chemistry.

[72]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[73]  J. Thevelein,et al.  A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis , 2007, Planta.

[74]  B. Morgenstern,et al.  AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome , 2006, Genome Biology.

[75]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[76]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[77]  B. Buchanan,et al.  Redox regulation: a broadening horizon. , 2005, Annual review of plant biology.

[78]  B. Haas,et al.  Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release , 2005, BMC Biology.

[79]  Wolfgang Busch,et al.  Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. , 2004, The Plant journal : for cell and molecular biology.

[80]  J. Beaver,et al.  Registration of 'Amadeus 77' small red common bean , 2004 .

[81]  A. Holmgren,et al.  Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. , 2004, Antioxidants & redox signaling.

[82]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[83]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[84]  P. Miklas,et al.  A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivar Montana No.5 , 2003, Euphytica.

[85]  Blake C. Meyers,et al.  Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.009308. , 2003, The Plant Cell Online.

[86]  L. Curatti,et al.  Origin of sucrose metabolism in higher plants: when, how and why? , 2003, Trends in plant science.

[87]  M. Jahn,et al.  Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris , 2001 .

[88]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[89]  J. François,et al.  Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. , 1997, Microbiology.

[90]  S. Singh,et al.  Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing , 1994, Theoretical and Applied Genetics.

[91]  J. Kigel,et al.  Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.) , 1994 .

[92]  C. Guy,et al.  Sucrose phosphate synthase and sucrose accumulation at low temperature. , 1992, Plant physiology.

[93]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[94]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[95]  H. Wien,et al.  Flower and Pod Abscission Due to Heat Stress in Beans , 1990 .

[96]  T. Michaels,et al.  Simple genetic control of hybrid plant development in interspecific crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray , 1986 .

[97]  D. Gaff,et al.  Desiccation-Tolerant Flowering Plants in Southern Africa , 1971, Science.

[98]  A. Hooker,et al.  On the structure of a gene for disease resistance in maize. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Johnathan B. Norton Inheritance of Habit in the Common Bean , 1915, The American Naturalist.

[100]  John P. Hart,et al.  Genotyping the ex situ genetic resources of wild and cultivated tepary bean , 2019 .

[101]  V. Thareau,et al.  Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. , 2016, Plant science : an international journal of experimental plant biology.

[102]  M. Abdin,et al.  Stress signaling in plants: genomics and proteomics perspective , 2013 .

[103]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[104]  J. Myers,et al.  Seed storage proteins ARL2 and its variants from the apalocus of wild tepary bean G40199 confers resistance to acanthoscellides obtectus when expressed in common beans , 2011 .

[105]  G. Nabhan,et al.  Teparies in southwestern North America , 2008, Economic Botany.

[106]  P. Csermely,et al.  Molecular aspects of the stress response : chaperones, membranes and networks , 2007 .

[107]  J. Thevelein,et al.  Trehalose metabolism: enzymatic pathways and physiological functions , 2004 .

[108]  R. Michelmore,et al.  Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.009308. , 2003, The Plant Cell Online.

[109]  Q. Sun,et al.  Resistance gene complexes: evolution and utilization. , 2001, Annual review of phytopathology.

[110]  Shree P. Singh,et al.  Resistance to Common Bacterial Blight amongPhaseolus Species and Common Bean Improvement , 1999 .

[111]  J. Carpenter,et al.  The role of vitrification in anhydrobiosis. , 1998, Annual review of physiology.

[112]  A. Paterson,et al.  Preparation of megabase‐size DNA from plant nuclei , 1995 .

[113]  J. Doyle,et al.  Isolation of plant DNA from fresh tissue , 1990 .

[114]  R. Manshardt,et al.  Teparies as a Source of Useful Traits for Improving Common Beans , 1983 .