Translation of the phosphoinositide code by PI effectors.

Phosphoinositide (PI) lipids are essential components of eukaryotic cell membranes. They are produced by mono-, bis- and trisphosphorylation of the inositol headgroup of phosphatidylinositol (PtdIns) and are concentrated in separate pools of cytosolic membranes. PIs serve as markers of the cell compartments and form unique docking sites for protein effectors. Collectively, seven known PIs, the protein effectors that bind them and enzymes that generate or modify PIs compose a remarkably complex protein-lipid signaling network. A number of cytosolic proteins contain one or several effector modules capable of recognizing individual PIs and recruiting the host proteins to distinct intracellular compartment. The recently determined atomic-resolution structures and membrane-targeting mechanisms of a dozen PI effectors have provided insights into the molecular basis for regulation of endocytic membrane trafficking and signaling. In this review, I highlight the structural aspects of the deciphering of the 'PI code' by the most common PI-recognizing effectors and discuss the mechanistic details of their membrane anchoring.

[1]  W. Cho,et al.  Mechanistic Basis of Differential Cellular Responses of Phosphatidylinositol 3,4-Bisphosphate- and Phosphatidylinositol 3,4,5-Trisphosphate-binding Pleckstrin Homology Domains* , 2007, Journal of Biological Chemistry.

[2]  S. Emr,et al.  Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes , 2001, Nature Cell Biology.

[3]  M. Yaffe,et al.  The PX domains of p47phox and p40phox bind to lipid products of PI(3)K , 2001, Nature Cell Biology.

[4]  N. C. Price,et al.  Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. , 2003, The Biochemical journal.

[5]  P R Evans,et al.  Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. , 2001, Science.

[6]  O. Pylypenko,et al.  The PX‐BAR membrane‐remodeling unit of sorting nexin 9 , 2007, The EMBO journal.

[7]  P. Sigler,et al.  Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain , 1995, Cell.

[8]  D. Baltimore,et al.  A putative modular domain present in diverse signaling proteins , 1993, Cell.

[9]  L Shapiro,et al.  G-Protein Signaling Through Tubby Proteins , 2001, Science.

[10]  P. Caroni,et al.  New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. , 2001, The EMBO journal.

[11]  B. Hemmings,et al.  Pleckstrin domain homology , 1993, Nature.

[12]  A. Hounslow,et al.  Determinants of the endosomal localization of sorting nexin 1. , 2005, Molecular biology of the cell.

[13]  Florante A. Quiocho,et al.  Crystal Structure of the VHS and FYVE Tandem Domains of Hrs, a Protein Involved in Membrane Trafficking and Signal Transduction , 2000, Cell.

[14]  Diana Murray,et al.  Mechanism of Membrane Binding of the Phospholipase D1 PX Domain* , 2004, Journal of Biological Chemistry.

[15]  K. Mikoshiba,et al.  Mutation of the Pleckstrin Homology Domain of Bruton's Tyrosine Kinase in Immunodeficiency Impaired Inositol 1,3,4,5-Tetrakisphosphate Binding Capacity* , 1996, The Journal of Biological Chemistry.

[16]  Hidekazu Hiroaki,et al.  Solution structure of the PX domain, a target of the SH3 domain , 2001, Nature Structural Biology.

[17]  D. Lambright,et al.  Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. , 2007, Molecular cell.

[18]  Karthikeyan Diraviyam,et al.  Phosphatidylinositol 3-Phosphate Induces the Membrane Penetration of the FYVE Domains of Vps27p and Hrs* , 2002, The Journal of Biological Chemistry.

[19]  H. Stenmark,et al.  Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. , 2001, The Biochemical journal.

[20]  J. Falke,et al.  Single-molecule fluorescence studies of a PH domain: new insights into the membrane docking reaction. , 2009, Biophysical journal.

[21]  M. Lemmon,et al.  Membrane recognition by phospholipid-binding domains , 2008, Nature Reviews Molecular Cell Biology.

[22]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[23]  M. Lemmon,et al.  Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. , 2000, Molecular cell.

[24]  A. Thorburn,et al.  Membrane‐targeting sequences on AKAP79 bind phosphatidylinositol‐4,5‐bisphosphate , 1998, The EMBO journal.

[25]  C. Burd,et al.  Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Jerónimo Bravo,et al.  Binding of the PX domain of p47phox to phosphatidylinositol 3,4‐bisphosphate and phosphatidic acid is masked by an intramolecular interaction , 2002, The EMBO journal.

[27]  Spyro Mousses,et al.  A transforming mutation in the pleckstrin homology domain of AKT1 in cancer , 2007, Nature.

[28]  Roger L. Williams,et al.  The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. , 2001, Molecular cell.

[29]  M. Waterfield,et al.  Synthesis and function of 3-phosphorylated inositol lipids. , 2001, Annual review of biochemistry.

[30]  M. Roth Phosphoinositides in constitutive membrane traffic. , 2004, Physiological reviews.

[31]  G. Prestwich,et al.  Multivalent Mechanism of Membrane Insertion by the FYVE Domain* , 2004, Journal of Biological Chemistry.

[32]  J. Hurley,et al.  Membrane binding domains. , 2006, Biochimica et biophysica acta.

[33]  Paul Tempst,et al.  PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox , 2001, Nature Cell Biology.

[34]  H. Stenmark,et al.  The endosome fusion regulator early-endosomal autoantigen 1 (EEA1) is a dimer. , 1999, The Biochemical journal.

[35]  Maria Deak,et al.  High-Resolution Structure of the Pleckstrin Homology Domain of Protein Kinase B/Akt Bound to Phosphatidylinositol (3,4,5)-Trisphosphate , 2002, Current Biology.

[36]  H. Mertens,et al.  A high‐resolution solution structure of a trypanosomatid FYVE domain , 2007, Protein science : a publication of the Protein Society.

[37]  J. Janin,et al.  Crystal Structure of the Yeast Phox Homology (PX) Domain Protein Grd19p Complexed to Phosphatidylinositol-3-phosphate* , 2003, Journal of Biological Chemistry.

[38]  T. Balla,et al.  Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study , 2009, BMC Cell Biology.

[39]  Roger L. Williams,et al.  Structural and Membrane Binding Analysis of the Phox Homology Domain of Phosphoinositide 3-Kinase-C2α* , 2006, Journal of Biological Chemistry.

[40]  Roger L. Williams,et al.  Structural and Membrane Binding Analysis of the Phox Homology Domain of Bem1p , 2007, Journal of Biological Chemistry.

[41]  Marilyn Goudreault,et al.  Non-canonical Interaction of Phosphoinositides with Pleckstrin Homology Domains of Tiam1 and ArhGAP9* , 2007, Journal of Biological Chemistry.

[42]  M. Kirschner,et al.  Mechanism of N-Wasp Activation by Cdc42 and Phosphatidylinositol 4,5-Bisphosphate , 2000, The Journal of cell biology.

[43]  Toshio Hakoshima,et al.  Structural basis of the membrane‐targeting and unmasking mechanisms of the radixin FERM domain , 2000, The EMBO journal.

[44]  Wonhwa Cho,et al.  Membrane binding and subcellular targeting of C2 domains. , 2006, Biochimica et biophysica acta.

[45]  J. Markley,et al.  Solution structure of human sorting nexin 22 , 2007, Protein science : a publication of the Protein Society.

[46]  Rein Aasland,et al.  FYVE fingers bind PtdIns(3)P , 1998, Nature.

[47]  M. Junop,et al.  Bmc Structural Biology Structural Analysis of the Carboxy Terminal Ph Domain of Pleckstrin Bound to D-myo-inositol 1,2,3,5,6-pentakisphosphate , 2022 .

[48]  S. McLaughlin,et al.  The Effector Domain of Myristoylated Alanine-rich C Kinase Substrate Binds Strongly to Phosphatidylinositol 4,5-Bisphosphate* , 2001, The Journal of Biological Chemistry.

[49]  W. Hong,et al.  SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P , 2001, Nature Cell Biology.

[50]  G. Prestwich,et al.  Investigation of the binding geometry of a peripheral membrane protein , 2005 .

[51]  P. De Camilli,et al.  Mutations in phosphoinositide metabolizing enzymes and human disease. , 2009, Physiology.

[52]  D. Lambright,et al.  The FYVE Domain of Early Endosome Antigen 1 Is Required for Both Phosphatidylinositol 3-Phosphate and Rab5 Binding , 2000, The Journal of Biological Chemistry.

[53]  F. Inagaki,et al.  Full‐length p40phox structure suggests a basis for regulation mechanism of its membrane binding , 2007, The EMBO journal.

[54]  M. Lemmon,et al.  All Phox Homology (PX) Domains from Saccharomyces cerevisiae Specifically Recognize Phosphatidylinositol 3-Phosphate* , 2001, The Journal of Biological Chemistry.

[55]  C. Burd,et al.  Membrane insertion of the FYVE domain is modulated by pH , 2009, Proteins.

[56]  A. Chawla,et al.  A functional PtdIns(3)P-binding motif , 1998, Nature.

[57]  D. Murray,et al.  Computer modeling of the membrane interaction of FYVE domains. , 2003, Journal of molecular biology.

[58]  R. Michell,et al.  Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. , 2009, The Biochemical journal.

[59]  M. Lemmon,et al.  Pleckstrin homology domains: not just for phosphoinositides. , 2004, Biochemical Society transactions.

[60]  Diana Murray,et al.  Membrane Binding Mechanisms of the PX Domains of NADPH Oxidase p40 phox and p47 phox * , 2003, The Journal of Biological Chemistry.

[61]  Pietro De Camilli,et al.  BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. , 2006, Biochimica et biophysica acta.

[62]  J. Holik,et al.  Signaling by Phosphoinositide-3,4,5-Trisphosphate Through Proteins Containing Pleckstrin and Sec7 Homology Domains , 1997, Science.

[63]  C. Ponting Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3‐kinases: Binding partners of SH3 domains? , 1996, Protein science : a publication of the Protein Society.

[64]  Michael I. Wilson,et al.  The structural basis of novel endosome anchoring activity of KIF16B kinesin , 2007, The EMBO journal.

[65]  Diana Murray,et al.  Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains , 2003, Protein science : a publication of the Protein Society.

[66]  M. Czech,et al.  Phox homology domains specifically bind phosphatidylinositol phosphates. , 2001, Biochemistry.

[67]  C. Burd,et al.  Molecular Mechanism of Membrane Docking by the Vam7p PX Domain* , 2006, Journal of Biological Chemistry.

[68]  Karthikeyan Diraviyam,et al.  The Molecular Basis of the Differential Subcellular Localization of FYVE Domains* , 2004, Journal of Biological Chemistry.

[69]  C. Burd,et al.  PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking , 2009, The Journal of cell biology.

[70]  M. Lemmon,et al.  High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. , 2001, Biochemistry.

[71]  A. M. Riley,et al.  Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. , 1999, Structure.

[72]  T. Pollard,et al.  The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. , 1990, Science.

[73]  M. Overduin,et al.  Structural mechanism of endosome docking by the FYVE domain. , 2001, Science.

[74]  T. Kutateladze Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. , 2007, Progress in lipid research.

[75]  Michelle M. Ng,et al.  GOLPH3 Bridges Phosphatidylinositol-4- Phosphate and Actomyosin to Stretch and Shape the Golgi to Promote Budding , 2009, Cell.

[76]  Jun Yu,et al.  Membrane activity of the phospholipase C-δ1 pleckstrin homology (PH) domain , 2005 .

[77]  Harald Stenmark,et al.  Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes , 2004, Journal of Cell Science.

[78]  S. Lietzke,et al.  Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. , 2000, Molecular cell.

[79]  A. Prescott,et al.  Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates , 2004, The EMBO journal.

[80]  James H. Hurley,et al.  Crystal Structure of a Phosphatidylinositol 3-Phosphate-Specific Membrane-Targeting Motif, the FYVE Domain of Vps27p , 1999, Cell.

[81]  Ji Luo,et al.  The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism , 2006, Nature Reviews Genetics.

[82]  Josep Rizo,et al.  Solution structure of the Vam7p PX domain. , 2002, Biochemistry.

[83]  P. Zimmermann The prevalence and significance of PDZ domain-phosphoinositide interactions. , 2006, Biochimica et biophysica acta.

[84]  Glenn D Prestwich,et al.  Phosphoinositide Signaling: From Affinity Probes to Pharmaceutical Targets , 2004 .

[85]  P. Hajduk,et al.  Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate , 1994, Nature.

[86]  M Wilmanns,et al.  Structure of the binding site for inositol phosphates in a PH domain. , 1995, The EMBO journal.

[87]  Zhou Songyang,et al.  Structural Basis of Membrane Targeting by the Phox Homology Domain of Cytokine-independent Survival Kinase (CISK-PX)* , 2004, Journal of Biological Chemistry.

[88]  C. Burd,et al.  Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. , 1998, Molecular cell.

[89]  T. Kutateladze Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. , 2006, Biochimica et biophysica acta.

[90]  W. Cho,et al.  Orientation and penetration depth of monolayer-bound p40phox-PX. , 2006, Biochemistry.

[91]  P. Lipp,et al.  FENS-1 and DFCP1 are FYVE domain-containing proteins with distinct functions in the endosomal and Golgi compartments. , 2001, Journal of cell science.

[92]  Pietro De Camilli,et al.  Phosphoinositides in cell regulation and membrane dynamics , 2006, Nature.

[93]  D. Lambright,et al.  Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains , 2004, The EMBO journal.

[94]  D. Lambright,et al.  Structural Basis for Endosomal Targeting by FYVE Domains* , 2004, Journal of Biological Chemistry.

[95]  W. Hong,et al.  The Phox (PX) domain proteins and membrane traffic. , 2006, Biochimica et biophysica acta.

[96]  D. Lambright,et al.  Multivalent endosome targeting by homodimeric EEA1. , 2001, Molecular cell.

[97]  D. Lambright,et al.  Membrane and juxtamembrane targeting by PH and PTB domains. , 2006, Biochimica et biophysica acta.

[98]  M. Lemmon,et al.  Signal-dependent membrane targeting by pleckstrin homology (PH) domains. , 2000, The Biochemical journal.