A GENERAL NON-LINEAR THIRD-ORDER THEORY OF PLATES WITH MODERATE THICKNESS
暂无分享,去创建一个
[1] A. Bhimaraddi. Static and transient response of rectangular plates , 1987 .
[2] H. Hencky,et al. Über die Berücksichtigung der Schubverzerrung in ebenen Platten , 1947 .
[3] Liviu Librescu,et al. Analytical solution of a refined shear deformation theory for rectangular composite plates , 1987 .
[4] J. N. Reddy,et al. On the forced motions of antisymmetric cross-ply laminated plates , 1989 .
[5] A. V. Krishna Murty,et al. Flexure of composite plates , 1987 .
[6] J. N. Reddy,et al. Energy and variational methods in applied mechanics , 1984 .
[7] A. B. Basset. On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells , 1889 .
[8] F. B. Hildebrand,et al. Notes on the foundations of the theory of small displacements of orthotropic shells , 1949 .
[9] J. N. Reddy,et al. A Small Strain and Moderate Rotation Theory of Elastic Anisotropic Plates , 1987 .
[10] J. N. Reddy,et al. EFFECTS OF SHEAR DEFORMATION AND ANISOTROPY ON THE THERMAL BENDING OF LAYERED COMPOSITE PLATES , 1980 .
[11] L. K. Stevens,et al. A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates , 1984 .
[12] J. N. Reddy,et al. On the Generalization of Displacement-Based Laminate Theories , 1989 .
[13] G. Kirchhoff,et al. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .
[14] N. Huffington. RESPONSE OF ELASTIC COLUMNS TO AXIAL PULSE LOADING , 1963 .
[15] S. T. Chow,et al. Buckling of Shear-Deformable Plates , 1987 .
[16] J. N. Reddy,et al. Dynamic response of antisymmetric angle-ply laminated plates subjected to arbitrary loading , 1988 .
[17] J. Reddy. A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .
[18] M. Poisson. Mémoire sur l'équilibre et le mouvement des corps élastiques , 1828 .
[19] A. V. Krishna Murty. Higher order theory for vibrations of thick plates , 1977 .
[20] J. Reddy,et al. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory , 1985 .
[21] J. N. Reddy,et al. A refined nonlinear theory of plates with transverse shear deformation , 1984 .
[22] J. Reddy,et al. Lévy Type Solutions for Symmetrically Laminated Rectangular Plates Using First-Order Shear Deformation Theory , 1987 .
[23] E. Reissner. ON THE THEORY OF BENDING OF ELASTIC PLATES , 1944 .
[24] M. Levinson,et al. An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .
[25] J. N. Reddy,et al. A review of refined theories of laminated composite plates , 1990 .
[26] R. D. Mindlin,et al. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .