Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.

A BSTRACT Background The HER2 gene, which encodes the growth factor receptor HER2, is amplified and HER2 is overexpressed in 25 to 30 percent of breast cancers, increasing the aggressiveness of the tumor. Methods We evaluated the efficacy and safety of trastuzumab, a recombinant monoclonal antibody against HER2, in women with metastatic breast cancer that overexpressed HER2. We randomly assigned 234 patients to receive standard chemotherapy alone and 235 patients to receive standard chemotherapy plus trastuzumab. Patients who had not previously received adjuvant (postoperative) therapy with an anthracycline were treated with doxorubicin (or epirubicin in the case of 36 women) and cyclophosphamide with (143 women) or without trastuzumab (138 women). Patients who had previously received adjuvant anthracycline were treated with paclitaxel alone (96 women) or paclitaxel with trastuzumab (92 women). Results The addition of trastuzumab to chemotherapy was associated with a longer time to disease progression (median, 7.4 vs. 4.6 months; P<0.001), a higher rate of objective response (50 percent vs. 32 percent, P<0.001), a longer duration of response (median, 9.1 vs. 6.1 months; P<0.001), a lower rate of death at 1 year (22 percent vs. 33 percent, P=0.008), longer survival (median survival, 25.1 vs. 20.3 months; P=0.046), and a 20 percent reduction in the risk of death. The most important adverse event was cardiac dysfunction, which occurred in 27 percent of the group given an anthracycline, cyclophosphamide, and trastuzumab; 8 percent of the group given an anthracycline and cyclophosphamide alone; 13 percent of the group given paclitaxel and trastuzumab; and 1 percent of the group given paclitaxel alone. Although the cardiotoxicity was potentially severe and, in some cases, life-threatening, the symptoms generally improved with standard medical management. Conclusions Trastuzumab increases the clinical benefit of first-line chemotherapy in metastatic breast cancer that overexpresses HER2. (N Engl J Med 2001; 344:783-92.)

[1]  N. Robert,et al.  Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  V Torri,et al.  Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31,510 women. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  G. Hortobagyi,et al.  Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  W. McGuire,et al.  Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. , 1987, Science.

[5]  M. Sliwkowski,et al.  Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers , 1999, Oncogene.

[6]  T. Yamamoto,et al.  The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. , 1986, Science.

[7]  R. Finn,et al.  Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs , 1998, Oncogene.

[8]  M. Sliwkowski,et al.  HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. , 1995, Oncogene.

[9]  G. Hortobagyi,et al.  Treatment of breast cancer. , 1998, The New England journal of medicine.

[10]  C R King,et al.  Amplification of a novel v-erbB-related gene in a human mammary carcinoma. , 1985, Science.

[11]  A. Ullrich,et al.  p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor , 1989, Molecular and cellular biology.

[12]  L. Presta,et al.  Humanization of an anti-p185HER2 antibody for human cancer therapy. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Ullrich,et al.  Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Slamon,et al.  Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. , 1994, Oncogene.

[15]  P. Ravdin,et al.  The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers--a review. , 1995, Gene.

[16]  I. Henderson,et al.  New treatments for breast cancer. , 1996, Seminars in oncology.

[17]  S. Ebbs,et al.  Chemotherapy and survival in advanced breast cancer: the inclusion of doxorubicin in Cooper type regimens. , 1993, British Journal of Cancer.

[18]  D. Horsfall,et al.  Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The South Australian Breast Cancer Study Group. , 1993, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  R. Cardiff,et al.  Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W Godolphin,et al.  Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. , 1989, Science.

[21]  D Tripathy,et al.  Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  Taylor Murray,et al.  Cancer statistics, 1999 , 1999, CA: a cancer journal for clinicians.

[23]  P. Seeburg,et al.  Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. , 1985, Science.

[24]  J. Poen,et al.  Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. , 1999, Cancer research.

[25]  D. Slamon,et al.  Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. , 1992, Oncogene.

[26]  R Akita,et al.  Her-2/neu expression in node-negative breast cancer: direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease. , 1993, Cancer research.

[27]  C R King,et al.  erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. , 1987, Science.

[28]  D Tripathy,et al.  Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[29]  L. Norton,et al.  Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. , 1998, Cancer research.