Roadmap on nanogenerators and piezotronics

[1]  Qian Zhang,et al.  Highly Stretchable Lactate-Based Piezoelectric Elastomer with High Current Density and Fast Self-healing Behaviors , 2022, Nano Energy.

[2]  N. Wanasekara,et al.  Scalable Textile Manufacturing Methods for Fabricating Triboelectric Nanogenerators with Balanced Electrical and Wearable Properties , 2022, ACS applied electronic materials.

[3]  Sang‐Woo Kim,et al.  Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics , 2022, Science advances.

[4]  Yuanjie Su,et al.  MXene-Sponge Based High-Performance Piezoresistive Sensor for Wearable Biomonitoring and Real-Time Tactile Sensing. , 2021, Small methods.

[5]  Zhong Lin Wang,et al.  Theoretical modeling of a cylindrical triboelectric nanogenerator , 2021, Nano Energy.

[6]  Jun Chen,et al.  Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator , 2021, Nano Energy.

[7]  K. Wijayantha,et al.  Theoretical and experimental investigation into the asymmetric external charging of Triboelectric Nanogenerators , 2021, Nano Energy.

[8]  T. Hsiai,et al.  Ambulatory Cardiovascular Monitoring Via a Machine‐Learning‐Assisted Textile Triboelectric Sensor , 2021, Advanced materials.

[9]  S. Hajra,et al.  Nanogenerator for determination of acoustic power in ultrasonic reactors , 2021, Ultrasonics sonochemistry.

[10]  Jie Kong,et al.  Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics , 2021 .

[11]  Lijie Li,et al.  Triboelectric nanogenerator based self-powered sensor for artificial intelligence , 2021, Nano Energy.

[12]  Panpan Zhang,et al.  Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing , 2021, RSC advances.

[13]  S. Kar‐Narayan,et al.  Piezoelectric polymers: theory, challenges and opportunities , 2021, International Materials Reviews.

[14]  Hassan Askari,et al.  Nanogenerators for smart cities in the era of 5G and Internet of Things , 2021 .

[15]  Yong Qin,et al.  A Fully Self-Healing Piezoelectric Nanogenerator for Self-Powered Pressure Sensing Electronic Skin , 2021, Research.

[16]  Zhong Lin Wang,et al.  Designing Rules and Optimization of Triboelectric Nanogenerator Arrays , 2021, Advanced Energy Materials.

[17]  Haeshin Lee,et al.  Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease , 2021 .

[18]  Mengdi Han,et al.  Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition , 2021, Research.

[19]  P. Szewczyk,et al.  Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications , 2021, ACS applied materials & interfaces.

[20]  Zhaoling Li,et al.  Flexible High‐Resolution Triboelectric Sensor Array Based on Patterned Laser‐Induced Graphene for Self‐Powered Real‐Time Tactile Sensing , 2021, Advanced Functional Materials.

[21]  G. Dzhardimalieva,et al.  A review on the polymers with shape memory assisted self-healing properties for triboelectric nanogenerators , 2021, Journal of Materials Research.

[22]  Zhong Lin Wang,et al.  The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports , 2021, Advanced materials.

[23]  Melvin A. Ramos,et al.  Ultra-low CNTs filled high-performance fast self-healing triboelectric nanogenerators for wearable electronics , 2021 .

[24]  Bhupender Rawal,et al.  Freeze casting of lamellar-structured porous lead-free (Na0.52K0.48)(Nb0.95Sb0.05)O3 piezoceramic with remarkable enhancement in piezoelectric voltage constant and hydrostatic figure of merit , 2021, Journal of Materials Science: Materials in Electronics.

[25]  Yuanjie Su,et al.  Muscle Fibers Inspired High‐Performance Piezoelectric Textiles for Wearable Physiological Monitoring , 2021, Advanced Functional Materials.

[26]  Meiling Zhu,et al.  Energy Savvy Network Joining Strategies for Energy Harvesting Powered TSCH Nodes , 2021, IEEE Transactions on Industrial Informatics.

[27]  Chengkuo Lee,et al.  Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems , 2021 .

[28]  Chenguo Hu,et al.  Advanced designs for output improvement of triboelectric nanogenerator system , 2021 .

[29]  Yeon Sik Choi,et al.  Materials‐Related Strategies for Highly Efficient Triboelectric Energy Generators , 2021, Advanced Energy Materials.

[30]  Zhong Lin Wang,et al.  Multifunctional Coaxial Energy Fiber toward Energy Harvesting, Storage, and Utilization. , 2021, ACS nano.

[31]  Chenguo Hu,et al.  Wearable triboelectric sensors for biomedical monitoring and human-machine interface , 2021, iScience.

[32]  Chang Kyu Jeong,et al.  Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors , 2020 .

[33]  Zhong Lin Wang,et al.  Flame-Retardant Textile-Based Triboelectric Nanogenerators for Fire Protection Applications. , 2020, ACS nano.

[34]  Yeon Sik Choi,et al.  Nylon‐11 nanowires for triboelectric energy harvesting , 2020 .

[35]  G. Dzhardimalieva,et al.  Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators , 2020, Polymers.

[36]  Chenguo Hu,et al.  Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing , 2020 .

[37]  Yogendra Kumar Mishra,et al.  Recent Advances in Self‐Powered Tribo‐/Piezoelectric Energy Harvesters: All‐In‐One Package for Future Smart Technologies , 2020, Advanced Functional Materials.

[38]  Zhong Lin Wang,et al.  Theoretical modeling of triboelectric nanogenerators (TENGs) , 2020 .

[39]  W. Choi,et al.  Partitioned gradient-index phononic crystals for full phase control , 2020, Scientific Reports.

[40]  Wei Gao,et al.  Wireless battery-free wearable sweat sensor powered by human motion , 2020, Science Advances.

[41]  Hyunhyub Ko,et al.  Self-Healable Reprocessable Triboelectric Nanogenerators Fabricated with Vitrimeric Poly(hindered Urea) Networks. , 2020, ACS nano.

[42]  Yong Qin,et al.  Coaxial double helix structured fiber-based triboelectric nanogenerator for effectively harvesting mechanical energy , 2020, Nanoscale advances.

[43]  Hong Min Seung,et al.  Enhanced energy transfer and conversion for high performance phononic crystal-assisted elastic wave energy harvesting , 2020 .

[44]  Min-Soo Kim,et al.  Porous sandwich structures based on BaZrTiO3–BaCaTiO3 ceramics for piezoelectric energy harvesting , 2020 .

[45]  B. Youn,et al.  Designing a phononic crystal with a defect for energy localization and harvesting: Supercell size and defect location , 2020 .

[46]  Yadong Jiang,et al.  A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis , 2020 .

[47]  Qifa Zhou,et al.  Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications. , 2020, Nano energy.

[48]  Sang-Woo Kim,et al.  Nanogenerators to Power Implantable Medical Systems , 2020 .

[49]  Yong-Il Kim,et al.  Solvent-controlled crystalline beta-phase formation in electrospun P(VDF-TrFE) fibers for enhanced piezoelectric energy harvesting , 2020, APL Materials.

[50]  A. Ravindran,et al.  Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators , 2020, Nature Communications.

[51]  D. Galayko,et al.  Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters , 2020, Nature Communications.

[52]  Zhong Lin Wang,et al.  Flexoelectronics of centrosymmetric semiconductors , 2020, Nature Nanotechnology.

[53]  Chang Kyu Jeong,et al.  Triboelectric Nanogenerator versus Piezoelectric Generator at Low Frequency (<4 Hz): A Quantitative Comparison , 2020, iScience.

[54]  Benjamin C. K. Tee,et al.  Super Tough and Self-healable Poly(dimethylsiloxane) Elastomer via Hydrogen Bonding Association and its Applications as Triboelectric Nanogenerator. , 2020, ACS applied materials & interfaces.

[55]  Miso Kim,et al.  Achromatic acoustic gradient-index phononic crystal lens for broadband focusing , 2020, Applied Physics Letters.

[56]  Miso Kim,et al.  Gradient-index phononic crystals for omnidirectional acoustic wave focusing and energy harvesting , 2020 .

[57]  Zhong Lin Wang,et al.  Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing , 2020, Nature Communications.

[58]  Yang Kuang,et al.  Strongly coupled piezoelectric energy harvesters: Finite element modelling and experimental validation , 2020 .

[59]  Yubo Fan,et al.  Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. , 2020, ACS nano.

[60]  Yili Hu,et al.  A Battery‐ and Leadless Heart‐Worn Pacemaker Strategy , 2020, Advanced Functional Materials.

[61]  W. Xu,et al.  Multifunctional Water Drop Energy Harvesting and Human Motion Sensor Based on Flexible Dual-Mode Nanogenerator Incorporated with Polymer Nanotubes. , 2020, ACS applied materials & interfaces.

[62]  Zhong Lin Wang,et al.  Self-driven power management system for triboelectric nanogenerators , 2020 .

[63]  Carson I. Tucker,et al.  A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo , 2020, npj Flexible Electronics.

[64]  B. Youn,et al.  Elastic wave localization and harvesting using double defect modes of a phononic crystal , 2020 .

[65]  J. Gibert,et al.  Multifunctional Mechanical Metamaterials with Embedded Triboelectric Nanogenerators , 2020, Advanced Functional Materials.

[66]  Yadong Jiang,et al.  Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. , 2020, ACS nano.

[67]  Zheng Jun Chew,et al.  Adaptive Self-Configurable Rectifier for Extended Operating Range of Piezoelectric Energy Harvesting , 2020, IEEE Transactions on Industrial Electronics.

[68]  Youfan Hu,et al.  Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies , 2020 .

[69]  Jun Chen,et al.  Smart Textiles for Electricity Generation. , 2020, Chemical reviews.

[70]  Zhong Lin Wang Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution , 2020, Advanced Energy Materials.

[71]  Jie Kong,et al.  Self‐Healing, Flexible, and Tailorable Triboelectric Nanogenerators for Self‐Powered Sensors based on Thermal Effect of Infrared Radiation , 2020, Advanced Functional Materials.

[72]  Zhong Lin Wang,et al.  A Fully Self-Powered Vibration Monitoring System Driven by Dual-Mode Triboelectric Nanogenerators. , 2020, ACS nano.

[73]  Yin Long,et al.  Polymer-based Nanogenerator for Biomedical Applications , 2020 .

[74]  Zhong Lin Wang On the first principle theory of nanogenerators from Maxwell's equations , 2020 .

[75]  Jun Li,et al.  Degradable Piezoelectric Biomaterials for Wearable and Implantable Bioelectronics. , 2020, Current opinion in solid state & materials science.

[76]  Kathleen Moyer,et al.  Continuous Energy Harvesting and Motion Sensing from Flexible Electrochemical Nanogenerators: Toward Smart and Multifunctional Textiles. , 2020, ACS nano.

[77]  Lianjun Wang,et al.  Stretchable fabric generates electric power from woven thermoelectric fibers , 2020, Nature Communications.

[78]  Haixia Zhang,et al.  Self-powered flexible and transparent smart patch for temperature sensing , 2020 .

[79]  Guoliang Huang,et al.  Joint acoustic energy harvesting and noise suppression using deep-subwavelength acoustic device , 2020, Smart Materials and Structures.

[80]  Adrien Morel,et al.  Maximum power point of piezoelectric energy harvesters: a review of optimality condition for electrical tuning , 2020, Smart Materials and Structures.

[81]  Zhong Lin Wang,et al.  Unraveling Temperature‐Dependent Contact Electrification between Sliding‐Mode Triboelectric Pairs , 2020, Advanced Functional Materials.

[82]  Lihe Yan,et al.  Over 20% Efficiency in Methylammonium Lead Iodide Perovskite Solar Cells with Enhanced Stability via "In-Situ Solidification" of the TiO2 Compact Layer. , 2020, ACS applied materials & interfaces.

[83]  Zhong Lin Wang,et al.  Piezoelectricity in Multilayer Black Phosphorus for Piezotronics and Nanogenerators , 2020, Advanced materials.

[84]  Qiyao Huang,et al.  V2O5 Textile Cathodes with High Capacity and Stability for Flexible Lithium‐Ion Batteries , 2020, Advanced materials.

[85]  Grace X. Gu,et al.  Accelerating Auxetic Metamaterial Design with Deep Learning , 2020, Advanced Engineering Materials.

[86]  Yuyan Zhu,et al.  An Inductor-Free Output Multiplier for Power Promotion and Management of Triboelectric Nanogenerators toward Self-Powered Systems. , 2020, ACS applied materials & interfaces.

[87]  Thomas R. Shrout,et al.  Transparent ferroelectric crystals with ultrahigh piezoelectricity , 2020, Nature.

[88]  Chenchen Sun,et al.  An all-textile triboelectric sensor for wearable teleoperated human–machine interaction , 2019, Journal of Materials Chemistry A.

[89]  Ara Nazarian,et al.  Design of biodegradable, implantable devices towards clinical translation , 2019, Nature Reviews Materials.

[90]  Xinxin Kong,et al.  Ionic polymer-metal composites actuator driven by the pulse current signal of triboelectric nanogenerator , 2019 .

[91]  D. Galayko,et al.  Superior performance of half-wave to full-wave rectifier as a power conditioning circuit for triboelectric nanogenerators: Application to contact-separation and sliding mode TENG , 2019 .

[92]  Chenguo Hu,et al.  A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator , 2019 .

[93]  Zhike Peng,et al.  Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things , 2019, Applied Energy.

[94]  Chang Kyu Jeong,et al.  Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powered sensors , 2019, Journal of Materials Chemistry A.

[95]  Li Zheng,et al.  Dual-stimulus Smart Actuator and Robot-hand Based on Vapor- responsive PDMS Film and Triboelectric Nanogenerator. , 2019, ACS applied materials & interfaces.

[96]  Hyoung-Seok Lee,et al.  A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system , 2019, Sensors and Actuators A: Physical.

[97]  W. Choi,et al.  Gradient-index phononic crystals for highly dense flexural energy harvesting , 2019, Applied Physics Letters.

[98]  Seong Kwang Hong,et al.  Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing , 2019, Advanced materials.

[99]  W. Biniaś,et al.  Fabrication of a new PVDF/SbSI nanowire composite for smart wearable textile , 2019, Polymer.

[100]  Changling Li,et al.  A facile hot-pressing process for fabricating flexible top electrodes of piezoelectric ZnO nanowire nanogenerators , 2019, Nanotechnology.

[101]  Yunlong Zi,et al.  A universal standardized method for output capability assessment of nanogenerators , 2019, Nature Communications.

[102]  Peng Huang,et al.  Self-Activated Electrical Stimulation for Effective Hair Regeneration via a Wearable Omnidirectional Pulse Generator. , 2019, ACS nano.

[103]  Meiling Zhu,et al.  Power Management Circuit for Wireless Sensor Nodes Powered by Energy Harvesting: On the Synergy of Harvester and Load , 2019, IEEE Transactions on Power Electronics.

[104]  J. Hao,et al.  Microplasma‐Discharge‐Based Nitrogen Fixation Driven by Triboelectric Nanogenerator toward Self‐Powered Mechano‐Nitrogenous Fertilizer Supplier , 2019, Advanced Functional Materials.

[105]  Yunlong Zi,et al.  A universal method for quantitative analysis of triboelectric nanogenerators , 2019, Journal of Materials Chemistry A.

[106]  Chih‐Li Chang,et al.  Entirely, Intrinsically, and Autonomously Self‐Healable, Highly Transparent, and Superstretchable Triboelectric Nanogenerator for Personal Power Sources and Self‐Powered Electronic Skins , 2019, Advanced Functional Materials.

[107]  B. Liang,et al.  Ultrathin Planar Metasurface-based Acoustic Energy Harvester with Deep Subwavelength Thickness and Mechanical Rigidity , 2019, Scientific Reports.

[108]  Qiongfeng Shi,et al.  Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch , 2019, Nano Energy.

[109]  Christopher R. Bowen,et al.  Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems , 2019, The European Physical Journal Special Topics.

[110]  R. Dharmasena,et al.  Towards optimized triboelectric nanogenerators , 2019, Nano Energy.

[111]  Hong-Joon Yoon,et al.  Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology , 2019, Science.

[112]  Zhong Lin Wang,et al.  Fiber/Fabric‐Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence , 2019, Advanced materials.

[113]  Ya Yang,et al.  Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. , 2019, ACS applied materials & interfaces.

[114]  Wei Xu,et al.  Healable and shape-memory dual functional polymers for reliable and multipurpose mechanical energy harvesting devices , 2019, Journal of Materials Chemistry A.

[115]  Brent Strickland,et al.  The origin of pointing: Evidence for the touch hypothesis , 2019, Science Advances.

[116]  Zhong Lin Wang,et al.  Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid-Solid Contact Electrification. , 2019, ACS nano.

[117]  D. Cao,et al.  Vibration and energy harvesting performance of a piezoelectric phononic crystal beam , 2019, Smart Materials and Structures.

[118]  Wei Tang,et al.  Power management and effective energy storage of pulsed output from triboelectric nanogenerator , 2019, Nano Energy.

[119]  Hongsheng Luo,et al.  Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor , 2019, Nano Energy.

[120]  J. Rho,et al.  Simultaneous Inverse-Design of Material and Structure via Deep-Learning: Demonstration of Dipole Resonance Engineering using Core-Shell Nanoparticles. , 2019, ACS applied materials & interfaces.

[121]  M. Tudor,et al.  Integrating Flexible Filament Circuits for E‐Textile Applications , 2019, Advanced Materials Technologies.

[122]  Xuhui Sun,et al.  Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics , 2019, Journal of Materials Chemistry A.

[123]  Hengyu Guo,et al.  2D piezotronics in atomically thin zinc oxide sheets: Interfacing gating and channel width gating , 2019, Nano Energy.

[124]  Aurelia Chi Wang,et al.  On the origin of contact-electrification , 2019, Materials Today.

[125]  S. S. Ray,et al.  A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification , 2019, RSC Advances.

[126]  M. Collet,et al.  Enhancement of energy harvesting using acoustical-black-hole-inspired wave traps , 2019, Smart Materials and Structures.

[127]  Zhong Lin Wang,et al.  Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect , 2019, Advanced materials.

[128]  Guofa Cai,et al.  Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator , 2019, Nature Communications.

[129]  Yunlong Zi,et al.  On the force and energy conversion in triboelectric nanogenerators , 2019, Nano Energy.

[130]  Morten Willatzen,et al.  Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current , 2019, Nano Energy.

[131]  Pooi See Lee,et al.  Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility , 2019, Nano Energy.

[132]  Dongjie Jiang,et al.  Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation , 2019, Nano Energy.

[133]  Yang Zou,et al.  Symbiotic cardiac pacemaker , 2019, Nature Communications.

[134]  Bin Xu,et al.  Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals , 2019, Science.

[135]  Zhong Lin Wang Entropy theory of distributed energy for internet of things , 2019, Nano Energy.

[136]  Zhaoling Li,et al.  Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics , 2019, Nano Energy.

[137]  Jae Hyun Han,et al.  Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit , 2019, Nano Energy.

[138]  Zhong Lin Wang,et al.  A constant current triboelectric nanogenerator arising from electrostatic breakdown , 2019, Science Advances.

[139]  Qinghua Zhang,et al.  Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power , 2019, Nano Energy.

[140]  Zhong Lin Wang,et al.  Integrated charge excitation triboelectric nanogenerator , 2019, Nature Communications.

[141]  Choon-Su Park,et al.  Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting , 2019, Nano Energy.

[142]  Qiongfeng Shi,et al.  More than energy harvesting – Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems , 2019, Nano Energy.

[143]  Yadong Jiang,et al.  Effective anti-biofouling enabled by surface electric disturbance from water wave-driven nanogenerator. , 2019, Nano energy.

[144]  Wei Zhang,et al.  Continuous and scalable manufacture of amphibious energy yarns and textiles , 2019, Nature Communications.

[145]  D. Mandal,et al.  Ferroelectret materials and devices for energy harvesting applications , 2019, Nano Energy.

[146]  C. Bowen,et al.  Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca 0.3)TiO3 ceramics , 2019, Materials Research Bulletin.

[147]  Youfan Hu,et al.  Progress in textile-based triboelectric nanogenerators for smart fabrics , 2019, Nano Energy.

[148]  Seong Kwang Hong,et al.  Self-powered flexible electronics beyond thermal limits , 2019, Nano Energy.

[149]  Yang Kuang,et al.  Evaluation and validation of equivalent properties of macro fibre composites for piezoelectric transducer modelling , 2019, Composites Part B: Engineering.

[150]  Samuel R. Hamner,et al.  An Acute Randomized Controlled Trial of Noninvasive Peripheral Nerve Stimulation in Essential Tremor , 2019, Neuromodulation : journal of the International Neuromodulation Society.

[151]  Chunyu Zhao,et al.  A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials , 2019, Smart Materials and Structures.

[152]  H. Bergman,et al.  Deep brain stimulation: current challenges and future directions , 2019, Nature Reviews Neurology.

[153]  N. A. Shvetsova,et al.  Lead-free porous and composite materials for ultrasonic transducers applications , 2019, Ferroelectrics.

[154]  Jin Kon Kim,et al.  Nature Driven Bio‐Piezoelectric/Triboelectric Nanogenerator as Next‐Generation Green Energy Harvester for Smart and Pollution Free Society , 2019, Advanced Energy Materials.

[155]  Zhong Lin Wang,et al.  Environmental Energy Harvesting Adapting to Different Weather Conditions and Self-Powered Vapor Sensor Based on Humidity-Responsive Triboelectric Nanogenerators. , 2019, ACS applied materials & interfaces.

[156]  T. Brunet,et al.  Flat acoustics with soft gradient-index metasurfaces , 2019, Nature Communications.

[157]  N. Fang,et al.  Mechanical Metamaterials and Their Engineering Applications , 2019, Advanced Engineering Materials.

[158]  Tae Yun Kim,et al.  Self-Powered Motion-Driven Triboelectric Electroluminescence Textile System. , 2019, ACS applied materials & interfaces.

[159]  H. Fanet,et al.  MEMS four-terminal variable capacitor for low power capacitive adiabatic logic with high logic state differentiation , 2019, Nano Energy.

[160]  Jianhua Hao,et al.  Strategies and progress on improving robustness and reliability of triboelectric nanogenerators , 2019, Nano Energy.

[161]  Jae Su Yu,et al.  Wearable and durable triboelectric nanogenerators via polyaniline coated cotton textiles as a movement sensor and self-powered system , 2019, Nano Energy.

[162]  Adrien Morel,et al.  Frequency tuning of piezoelectric energy harvesters thanks to a short-circuit synchronous electric charge extraction , 2018, Smart Materials and Structures.

[163]  Badreddine Assouar,et al.  Acoustic perfect absorbers via spiral metasurfaces with embedded apertures , 2018, Applied Physics Letters.

[164]  Jun Li,et al.  Effective weight control via an implanted self-powered vagus nerve stimulation device , 2018, Nature Communications.

[165]  Caofeng Pan,et al.  Two-dimensional nanomaterials for novel piezotronics and piezophototronics , 2018, Materials Today Nano.

[166]  Xue Wang,et al.  Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor , 2018, Nano Energy.

[167]  W. Cai,et al.  Effective Wound Healing Enabled by Discrete Alternative Electric Fields from Wearable Nanogenerators , 2018, ACS nano.

[168]  Zhongze Gu,et al.  Piezoelectric-Driven Self-Powered Patterned Electrochromic Supercapacitor for Human Motion Energy Harvesting , 2018, ACS Sustainable Chemistry & Engineering.

[169]  Smita Mohanty,et al.  Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review , 2018, Macromolecular Materials and Engineering.

[170]  Jinhui Nie,et al.  Electrically Responsive Materials and Devices Directly Driven by the High Voltage of Triboelectric Nanogenerators , 2018, Advanced Functional Materials.

[171]  Meiling Zhu,et al.  Threshold Voltage Control to Improve Energy Utilization Efficiency of a Power Management Circuit for Energy Harvesting Applications , 2018, Proceedings.

[172]  Lingjie Xie,et al.  Coaxial Triboelectric Nanogenerator and Supercapacitor Fiber-Based Self-Charging Power Fabric. , 2018, ACS applied materials & interfaces.

[173]  Hengyu Guo,et al.  Triboelectric Nanogenerator: A Foundation of the Energy for the New Era , 2018, Advanced Energy Materials.

[174]  Jun Li,et al.  Implanted Battery-Free Direct-Current Micro-Power Supply from in Vivo Breath Energy Harvesting. , 2018, ACS applied materials & interfaces.

[175]  Jae Hyun Han,et al.  Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band , 2018, Nano Energy.

[176]  Heng Zhang,et al.  Wireless self-powered sensor networks driven by triboelectric nanogenerator for in-situ real time survey of environmental monitoring , 2018, Nano Energy.

[177]  Soon-Gil Yoon,et al.  Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films , 2018, Nano Energy.

[178]  Seong Kwang Hong,et al.  Machine learning-based self-powered acoustic sensor for speaker recognition , 2018, Nano Energy.

[179]  Yeon Sik Choi,et al.  Aerosol‐Jet Printed Fine‐Featured Triboelectric Sensors for Motion Sensing , 2018, Advanced Materials Technologies.

[180]  Yunlong Zi,et al.  High Energy Storage Efficiency Triboelectric Nanogenerators with Unidirectional Switches and Passive Power Management Circuits , 2018, Advanced Functional Materials.

[181]  Ying Wu,et al.  Acoustic metasurfaces , 2018, Nature Reviews Materials.

[182]  J. H. B. Deane,et al.  Power computation for the triboelectric nanogenerator , 2018, Nano Energy.

[183]  Kaushik Parida,et al.  Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting , 2018, Nature Communications.

[184]  Soon-Gil Yoon,et al.  A novel approach to ambient energy (thermoelectric, piezoelectric and solar-TPS) harvesting: Realization of a single structured TPS-fusion energy device using MAPbI3 , 2018, Nano Energy.

[185]  S. R. Silva,et al.  Nature of Power Generation and Output Optimization Criteria for Triboelectric Nanogenerators , 2018, Advanced Energy Materials.

[186]  Zhong Lin Wang,et al.  Elastic‐Beam Triboelectric Nanogenerator for High‐Performance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard , 2018, Advanced Energy Materials.

[187]  Yu Song,et al.  Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection , 2018, Nano Energy.

[188]  Xiangyu Bi,et al.  Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics , 2018, Nano Energy.

[189]  Tao Jiang,et al.  Structural figure-of-merits of triboelectric nanogenerators at powering loads , 2018, Nano Energy.

[190]  D. Galayko,et al.  A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator , 2018, Nano Energy.

[191]  Meiling Zhu,et al.  Adaptive Maximum Power Point Finding Using Direct VOC/2 Tracking Method With Microwatt Power Consumption for Energy Harvesting , 2018, IEEE Transactions on Power Electronics.

[192]  Philip X.-L. Feng,et al.  An Ultralow Quiescent Current Power Management System With Maximum Power Point Tracking (MPPT) for Batteryless Wireless Sensor Applications , 2018, IEEE Transactions on Power Electronics.

[193]  C. Bowen,et al.  Ice-templated poly(vinylidene fluoride) ferroelectrets. , 2018, Soft matter.

[194]  R. Ohayon,et al.  Acoustic metastructure for effective low-frequency acoustic energy harvesting , 2018, Journal of Low Frequency Noise, Vibration and Active Control.

[195]  Kyung‐Eun Byun,et al.  Triboelectric Series of 2D Layered Materials , 2018, Advanced materials.

[196]  Chang Kyu Jeong,et al.  Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting , 2018 .

[197]  C. Bowen,et al.  Understanding the effect of porosity on the polarisation-field response of ferroelectric materials , 2018, Acta Materialia.

[198]  Zhong Lin Wang,et al.  Triboelectrification-enabled thin-film tactile matrix for self-powered high-resolution imaging , 2018, Nano Energy.

[199]  J. Shan,et al.  Light–valley interactions in 2D semiconductors , 2018, Nature Photonics.

[200]  Zhong Lin Wang,et al.  A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids , 2018, Science Robotics.

[201]  Haizheng Zhong,et al.  Enhanced piezo-response in copper halide perovskites based PVDF composite films. , 2018, Science bulletin.

[202]  Yan Zhang,et al.  Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic–polymer composites† †Electronic supplementary information (ESI) available: Videos of the responses of sensors. See DOI: 10.1039/c8ee01551a , 2018, Energy & environmental science.

[203]  Adrien Morel,et al.  A unified N-SECE strategy for highly coupled piezoelectric energy scavengers , 2018, Smart Materials and Structures.

[204]  Mupeng Zheng,et al.  Targeted doping builds a high energy density composite piezoceramics for energy harvesting , 2018, Journal of the American Ceramic Society.

[205]  D. Mandal,et al.  Organo-lead halide perovskite regulated green light emitting poly(vinylidene fluoride) electrospun nanofiber mat and its potential utility for ambient mechanical energy harvesting application , 2018, Nano Energy.

[206]  Jung Hwan Park,et al.  Monolithic Flexible Vertical GaN Light‐Emitting Diodes for a Transparent Wireless Brain Optical Stimulator , 2018, Advanced materials.

[207]  Seungbum Hong,et al.  Enhanced piezoelectric output performance via control of dielectrics in Fe2+-incorporated MAPbI3 perovskite thin films: Flexible piezoelectric generators , 2018, Nano Energy.

[208]  Qingshen Jing,et al.  Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications , 2018, Journal of Physics D: Applied Physics.

[209]  Dong Hyun Kim,et al.  Enhanced Performance of Microarchitectured PTFE-Based Triboelectric Nanogenerator via Simple Thermal Imprinting Lithography for Self-Powered Electronics. , 2018, ACS applied materials & interfaces.

[210]  Lain‐Jong Li,et al.  Two-dimensional materials with piezoelectric and ferroelectric functionalities , 2018, npj 2D Materials and Applications.

[211]  Nitish V. Thakor,et al.  Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain , 2018, Science Robotics.

[212]  Hanqing Li,et al.  Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations , 2018, Nano Energy.

[213]  Yongmin Liu,et al.  Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. , 2018, ACS nano.

[214]  Zhuo Kang,et al.  Ultralight, self-powered and self-adaptive motion sensor based on triboelectric nanogenerator for perceptual layer application in Internet of things , 2018, Nano Energy.

[215]  Mengmeng Liu,et al.  Self-Healable, Stretchable, Transparent Triboelectric Nanogenerators as Soft Power Sources. , 2018, ACS nano.

[216]  Meng Wang,et al.  Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring. , 2018, ACS nano.

[217]  Joydeep Dhar,et al.  Lattice‐Defect‐Induced Piezo Response in Methylammonium‐Lead‐Iodide Perovskite Based Nanogenerator , 2018 .

[218]  Zhong Lin Wang,et al.  Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human-Machine Interaction. , 2018, ACS nano.

[219]  Z. Cao,et al.  Helix structure for low frequency acoustic energy harvesting. , 2018, The Review of scientific instruments.

[220]  R. Lewis,et al.  Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting , 2018, 1902.00314.

[221]  Youngwan Kim,et al.  PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants , 2018, Trends in hearing.

[222]  Alper Erturk,et al.  Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting , 2018 .

[223]  Sang‐Woo Kim,et al.  Understanding and modeling of triboelectric-electret nanogenerator , 2018 .

[224]  Puchuan Tan,et al.  Nanogenerator for Biomedical Applications , 2018, Advanced healthcare materials.

[225]  Steve Beeby,et al.  Solid‐State Supercapacitor Fabricated in a Single Woven Textile Layer for E‐Textiles Applications , 2018 .

[226]  Shengxi Zhou,et al.  High-Performance Piezoelectric Energy Harvesters and Their Applications , 2018 .

[227]  Feng Zhou,et al.  Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator , 2018, Nano Energy.

[228]  Junjie Yang,et al.  Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch , 2018 .

[229]  Zhong Lin Wang,et al.  On the Electron‐Transfer Mechanism in the Contact‐Electrification Effect , 2018, Advanced materials.

[230]  Ying-Chih Lai,et al.  Vitrimer Elastomer‐Based Jigsaw Puzzle‐Like Healable Triboelectric Nanogenerator for Self‐Powered Wearable Electronics , 2018, Advanced materials.

[231]  Robert A. Dorey,et al.  A unified theoretical model for Triboelectric Nanogenerators , 2018, Nano Energy.

[232]  Zhuo Xu,et al.  Ultrahigh piezoelectricity in ferroelectric ceramics by design , 2018, Nature Materials.

[233]  Soon-Gil Yoon,et al.  Self-powered pressure and light sensitive bimodal sensors based on long-term stable piezo-photoelectric MAPbI3 thin films , 2018 .

[234]  Zhong Lin Wang,et al.  Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. , 2018, Nanoscale.

[235]  William A. Goddard,et al.  Monolayer atomic crystal molecular superlattices , 2018, Nature.

[236]  N. Fang,et al.  Breaking the barriers: advances in acoustic functional materials , 2018 .

[237]  Zhengjun Wang,et al.  A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self‐Powered Vibration Sensing , 2018 .

[238]  Yi Cui,et al.  Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics , 2018, Nature Nanotechnology.

[239]  J. Brugger,et al.  All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring , 2018, Nano Energy.

[240]  Yong Wang,et al.  Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness , 2018, Proceedings of the National Academy of Sciences.

[241]  G. Buzsáki,et al.  Direct effects of transcranial electric stimulation on brain circuits in rats and humans , 2018, Nature Communications.

[242]  Jun Chen,et al.  Shape Memory Polymers for Body Motion Energy Harvesting and Self‐Powered Mechanosensing , 2018, Advanced materials.

[243]  Seokmin Lee,et al.  Layer-by-layer assembly-induced triboelectric nanogenerators with high and stable electric outputs in humid environments , 2018 .

[244]  Vijay Kumar,et al.  The grand challenges of Science Robotics , 2018, Science Robotics.

[245]  P. Gamble,et al.  Electrical Stimulation and Bone Healing: A Review of Current Technology and Clinical Applications , 2018, IEEE Reviews in Biomedical Engineering.

[246]  Yi Min Xie,et al.  Auxetic metamaterials and structures: a review , 2018 .

[247]  Zhong Lin Wang,et al.  Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. , 2018, ACS nano.

[248]  Mohammad-Reza Alam,et al.  Continuous profile flexural GRIN lens: Focusing and harvesting flexural waves , 2018 .

[249]  Takuzo Aida,et al.  Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking , 2018, Science.

[250]  Zhong Lin Wang,et al.  Transparent and Self-Powered Multistage Sensation Matrix for Mechanosensation Application. , 2017, ACS nano.

[251]  Wing Kam Liu,et al.  Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting , 2017 .

[252]  Shuibao Qi,et al.  Acoustic energy harvesting based on multilateral metasurfaces , 2017 .

[253]  Zhong Lin Wang,et al.  Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths. , 2017, ACS nano.

[254]  Dong Hyun Kim,et al.  Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting , 2017 .

[255]  Daewon Kim,et al.  Surface structural analysis of a friction layer for a triboelectric nanogenerator , 2017 .

[256]  Hong Min Seung,et al.  Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering , 2017 .

[257]  Martin Wegener,et al.  Three-dimensional mechanical metamaterials with a twist , 2017, Science.

[258]  Yang Wang,et al.  Triboelectric nanogenerators as flexible power sources , 2017, npj Flexible Electronics.

[259]  K. Helke,et al.  Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson's disease , 2017, Brain Stimulation.

[260]  K. Bertoldi,et al.  Flexible mechanical metamaterials , 2017 .

[261]  Jianxin He,et al.  Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor , 2017, Scientific Reports.

[262]  Yeon Sik Choi,et al.  A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting , 2017 .

[263]  Wanchul Seung,et al.  Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures. , 2017, ACS nano.

[264]  Jianhua Hao,et al.  Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode , 2017 .

[265]  Kaushik Parida,et al.  Highly Transparent, Stretchable, and Self‐Healing Ionic‐Skin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications , 2017, Advanced materials.

[266]  Cheng Xu,et al.  3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self‐Powered Active Motion Sensors , 2017, Advanced materials.

[267]  J. Hao,et al.  Energy Device Applications of Synthesized 1D Polymer Nanomaterials. , 2017, Small.

[268]  Tao Jiang,et al.  Toward the blue energy dream by triboelectric nanogenerator networks , 2017 .

[269]  S. Rossi,et al.  Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines , 2017, Clinical Neurophysiology.

[270]  Yang Zou,et al.  Self‐Powered Pulse Sensor for Antidiastole of Cardiovascular Disease , 2017, Advanced materials.

[271]  H. Peng,et al.  Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes. , 2017, Nano letters.

[272]  Na Li,et al.  Harvesting electrical energy from carbon nanotube yarn twist , 2017, Science.

[273]  G. Kresse,et al.  Behavior of Methylammonium Dipoles in MAPbX3 (X = Br and I) , 2017, The journal of physical chemistry letters.

[274]  Yang Kuang,et al.  Design study of a mechanically plucked piezoelectric energy harvester using validated finite element modelling , 2017 .

[275]  Robert A. Dorey,et al.  Triboelectric nanogenerators: providing a fundamental framework , 2017 .

[276]  Z. Fan,et al.  Broadband acoustic energy confinement in hierarchical sonic crystals composed of rotated square inclusions , 2017 .

[277]  Yu Song,et al.  Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring , 2017 .

[278]  Yunlong Zi,et al.  High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator , 2017 .

[279]  Kyung Jin Park,et al.  Light-transformable and -healable triboelectric nanogenerators , 2017 .

[280]  Tae Yun Kim,et al.  Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators , 2017, Advanced materials.

[281]  Meiling Zhu,et al.  A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments , 2017 .

[282]  Yu Song,et al.  High efficiency power management and charge boosting strategy for a triboelectric nanogenerator , 2017 .

[283]  Tae Whan Kim,et al.  Enhanced Triboelectric Nanogenerators Based on MoS2 Monolayer Nanocomposites Acting as Electron-Acceptor Layers. , 2017, ACS nano.

[284]  Jinlan Wang,et al.  An organic-inorganic perovskite ferroelectric with large piezoelectric response , 2017, Science.

[285]  Sai Sunil Kumar Mallineni,et al.  A Wireless Triboelectric Nanogenerator , 2017, 1707.03677.

[286]  Alper Erturk,et al.  Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting , 2017 .

[287]  Tao Jiang,et al.  Universal power management strategy for triboelectric nanogenerator , 2017 .

[288]  Long Lin,et al.  Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators , 2017 .

[289]  Zhong Lin Wang,et al.  Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator , 2017, Science Advances.

[290]  Dae Yong Park,et al.  Laser–Material Interactions for Flexible Applications , 2017, Advanced materials.

[291]  Xiao Wei Sun,et al.  High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride) , 2017 .

[292]  M. Matsuura,et al.  Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH3NH3PbI3 , 2017, Nature Communications.

[293]  Guang-Zhong Yang,et al.  Robotics for space and marine sciences , 2017, Science Robotics.

[294]  Zhiyong Cai,et al.  Chemically Functionalized Natural Cellulose Materials for Effective Triboelectric Nanogenerator Development , 2017 .

[295]  K. Sun,et al.  Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity , 2017 .

[296]  Jean-Marie Dilhac,et al.  Single Piezoelectric Transducer as Strain Sensor and Energy Harvester Using Time-Multiplexing Operation , 2017, IEEE Transactions on Industrial Electronics.

[297]  Meiling Zhu,et al.  Strain Energy Harvesting Powered Wireless Sensor System Using Adaptive and Energy-Aware Interface for Enhanced Performance , 2017, IEEE Transactions on Industrial Informatics.

[298]  Bin Ding,et al.  Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting , 2017 .

[299]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[300]  Y. Chai,et al.  Doping, Contact and Interface Engineering of Two‐Dimensional Layered Transition Metal Dichalcogenides Transistors , 2017 .

[301]  Renwen Chen,et al.  Direct calculation of source impedance to adaptive maximum power point tracking for broadband vibration energy harvesting , 2017 .

[302]  Binoy Bera,et al.  Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept , 2017 .

[303]  Christopher R. Bowen,et al.  Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit , 2017 .

[304]  Shunbo Hu,et al.  Phase Transition, Dielectric Properties, and Ionic Transport in the [(CH3)2NH2]PbI3 Organic-Inorganic Hybrid with 2H-Hexagonal Perovskite Structure. , 2017, Inorganic chemistry.

[305]  Caofeng Pan,et al.  Full Dynamic‐Range Pressure Sensor Matrix Based on Optical and Electrical Dual‐Mode Sensing , 2017, Advanced materials.

[306]  Meiling Zhu,et al.  Energy-Aware Approaches for Energy Harvesting Powered Wireless Sensor Nodes , 2017, IEEE Sensors Journal.

[307]  A. de Mel,et al.  A current affair: electrotherapy in wound healing , 2017, Journal of multidisciplinary healthcare.

[308]  Nafiseh Sharifi Olyaei,et al.  Directional properties of ordered 3‐3 piezocomposites fabricated by sacrificial template , 2017 .

[309]  Yan Zhang,et al.  Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta00967d Click here for additional data file. , 2017, Journal of materials chemistry. A.

[310]  Zhong Lin Wang On Maxwell's displacement current for energy and sensors: the origin of nanogenerators , 2017 .

[311]  Yang Kuang,et al.  Energy harvesting during human walking to power a wireless sensor node , 2017 .

[312]  Jian-Guo Sun,et al.  A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications , 2017 .

[313]  Suyoung Yang,et al.  Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film , 2017, Nano Research.

[314]  Zhiyong Xiao,et al.  Enhanced Piezoelectric Response in Hybrid Lead Halide Perovskite Thin Films via Interfacing with Ferroelectric PbZr0.2Ti0.8O3. , 2017, ACS applied materials & interfaces.

[315]  Boris Murmann,et al.  Highly stretchable polymer semiconductor films through the nanoconfinement effect , 2017, Science.

[316]  Takao Someya,et al.  The rise of plastic bioelectronics , 2016, Nature.

[317]  Jianhua Hao,et al.  Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator , 2016 .

[318]  Xiuli Fu,et al.  Machine‐Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns , 2016, Advanced materials.

[319]  R. Ruoff,et al.  Laser-induced phase separation of silicon carbide , 2016, Nature Communications.

[320]  Zhong Lin Wang,et al.  All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. , 2016, ACS nano.

[321]  Lu,et al.  A review on mechanics and mechanical properties of 2D materials—Graphene and beyond , 2016, 1611.01555.

[322]  Xiao Wei Sun,et al.  Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles , 2016 .

[323]  Biswajit Mahanty,et al.  Porous polymer composite membrane based nanogenerator: A realization of self-powered wireless green energy source for smart electronics applications , 2016 .

[324]  Chang Kyu Jeong,et al.  A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle-polymer composite. , 2016, Nanoscale.

[325]  S Dulio,et al.  Energy harvesting from human motion: materials and techniques. , 2016, Chemical Society reviews.

[326]  Bojing Shi,et al.  A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator , 2016 .

[327]  Hongsoo Choi,et al.  A Triboelectric‐Based Artificial Basilar Membrane to Mimic Cochlear Tonotopy , 2016, Advanced healthcare materials.

[328]  Zhong‐Lin Wang,et al.  Piezophototronic Effect in Single‐Atomic‐Layer MoS2 for Strain‐Gated Flexible Optoelectronics , 2016, Advanced materials.

[329]  Zhong Lin Wang,et al.  Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors , 2016, Science Advances.

[330]  Ping Sheng,et al.  Optimal sound-absorbing structures , 2016, 1609.09561.

[331]  Jie Wang,et al.  Sustainably powering wearable electronics solely by biomechanical energy , 2016, Nature Communications.

[332]  Kayode Williams,et al.  Review of Recent Advances in Peripheral Nerve Stimulation (PNS) , 2016, Current Pain and Headache Reports.

[333]  Yang Zou,et al.  Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring. , 2016, Nano letters.

[334]  Ayech Benjeddou,et al.  Finite element characterisation of multilayer d31 piezoelectric macro-fibre composites , 2016 .

[335]  L. Valdevit,et al.  Multistable Shape‐Reconfigurable Architected Materials , 2016, Advanced materials.

[336]  Xiaowei Yang,et al.  A human-machine interface based on single channel EOG and patchable sensor , 2016, Biomed. Signal Process. Control..

[337]  Zhenan Bao,et al.  Pursuing prosthetic electronic skin. , 2016, Nature materials.

[338]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[339]  Anton Leidl,et al.  MEMS microphones with narrow sensitivity distribution , 2016 .

[340]  Zhong Lin Wang,et al.  Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. , 2016, ACS applied materials & interfaces.

[341]  A. Erturk,et al.  Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting , 2016 .

[342]  C. Apovian,et al.  Two-Year Outcomes of Vagal Nerve Blocking (vBloc) for the Treatment of Obesity in the ReCharge Trial , 2016, Obesity Surgery.

[343]  Vito Renó,et al.  Recent trends in gesture recognition: how depth data has improved classical approaches , 2016, Image Vis. Comput..

[344]  Mi Kyung Kim,et al.  Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells. , 2016, ACS nano.

[345]  Qingsheng Zeng,et al.  Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films , 2016, Science Advances.

[346]  Yong Li,et al.  Acoustic energy harvesting based on a planar acoustic metamaterial , 2016 .

[347]  Chang Kyu Jeong,et al.  Stretchable piezoelectric nanocomposite generator , 2016, Nano Convergence.

[348]  T. Itoh,et al.  Wearable Keyboard Using Conducting Polymer Electrodes on Textiles , 2016, Advanced materials.

[349]  Jie Wang,et al.  A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring , 2016, Science Advances.

[350]  Christopher R. Bowen,et al.  Manufacture and characterization of porous ferroelectrics for piezoelectric energy harvesting applications , 2016 .

[351]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics , 2016 .

[352]  Chengkuo Lee,et al.  Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting , 2016 .

[353]  A. Schulze-Bonhage,et al.  Transcutaneous Vagus Nerve Stimulation (tVNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial (cMPsE02) , 2016, Brain Stimulation.

[354]  Chih-Kai Chang,et al.  Piezo‐Catalytic Effect on the Enhancement of the Ultra‐High Degradation Activity in the Dark by Single‐ and Few‐Layers MoS2 Nanoflowers , 2016, Advanced materials.

[355]  Anthony D. Whitehead,et al.  Quaternion-Based Gesture Recognition Using Wireless Wearable Motion Capture Sensors , 2016, Sensors.

[356]  Elena Blokhina,et al.  Electrostatic Kinetic Energy Harvesting: Basset/Electrostatic Kinetic Energy Harvesting , 2016 .

[357]  Qiongfeng Shi,et al.  MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices , 2016, Scientific Reports.

[358]  Wanchul Seung,et al.  Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators , 2016 .

[359]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[360]  Yang Xu,et al.  A regulatory policy to promote renewable energy consumption in China: Review and future evolutionary path , 2016 .

[361]  Caofeng Pan,et al.  Self‐Powered High‐Resolution and Pressure‐Sensitive Triboelectric Sensor Matrix for Real‐Time Tactile Mapping , 2016, Advanced materials.

[362]  Qingfeng Dong,et al.  Lateral‐Structure Single‐Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling , 2016, Advanced materials.

[363]  Jianhua Hao,et al.  Magnetic‐Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions , 2016, Advanced materials.

[364]  Jian Fang,et al.  High-sensitivity acoustic sensors from nanofibre webs , 2016, Nature Communications.

[365]  Guoliang Huang,et al.  Acoustic metamaterials capable of both sound insulation and energy harvesting , 2016 .

[366]  Zhong Lin Wang,et al.  Effective energy storage from a triboelectric nanogenerator , 2016, Nature Communications.

[367]  George M. Whitesides,et al.  A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom , 2016, Nature Communications.

[368]  Yang Zou,et al.  Biodegradable triboelectric nanogenerator as a life-time designed implantable power source , 2016, Science Advances.

[369]  Yeping Xiong,et al.  System-level coupled modeling of piezoelectric vibration energy harvesting systems by joint finite element and circuit analysis , 2016 .

[370]  W. Han Perspectives for spintronics in 2D materials , 2016, 1602.07315.

[371]  Chengyi Hou,et al.  Fluoroalkylsilane-Modified Textile-Based Personal Energy Management Device for Multifunctional Wearable Applications. , 2016, ACS applied materials & interfaces.

[372]  Yong Li,et al.  Acoustic metasurface-based perfect absorber with deep subwavelength thickness , 2016 .

[373]  J. Hoeijmakers,et al.  Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis , 2016, Science.

[374]  C. Chuong,et al.  Aging, alopecia, and stem cells , 2016, Science.

[375]  Tingting Xu,et al.  Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process , 2016 .

[376]  Nor Kamariah Noordin,et al.  A TDMA-Based Cooperative MAC Protocol for Cognitive Networks With Opportunistic Energy Harvesting , 2016, IEEE Communications Letters.

[377]  Bojing Shi,et al.  A Packaged Self‐Powered System with Universal Connectors Based on Hybridized Nanogenerators , 2016, Advanced materials.

[378]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[379]  J. Izbicki,et al.  Duodenal Electric Stimulation , 2016, Obesity Surgery.

[380]  Weiguo Hu,et al.  Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions. , 2016, ACS nano.

[381]  Leslie Y Yeo,et al.  Acoustically-Driven Trion and Exciton Modulation in Piezoelectric Two-Dimensional MoS2. , 2016, Nano letters.

[382]  Sung-Ho Shin,et al.  Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators , 2016 .

[383]  F. Zheng,et al.  Photoferroelectric and Photopiezoelectric Properties of Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[384]  Zhong Lin Wang,et al.  A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics , 2015, Nature Communications.

[385]  Senentxu Lanceros-Méndez,et al.  Piezoelectric polymers as biomaterials for tissue engineering applications. , 2015, Colloids and surfaces. B, Biointerfaces.

[386]  Sung Kyun Kim,et al.  Shape memory polymer-based self-healing triboelectric nanogenerator , 2015 .

[387]  Xue Feng,et al.  Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy , 2015, Scientific Reports.

[388]  Jin Woong Kim,et al.  Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments , 2015 .

[389]  Jie Wang,et al.  Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators , 2015, Nature Communications.

[390]  Yeong Hwan Ko,et al.  Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template. , 2015, ACS applied materials & interfaces.

[391]  Richard G Hennig,et al.  Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. , 2015, ACS nano.

[392]  Y. Kim,et al.  Broadband sound blocking in phononic crystals with rotationally symmetric inclusions. , 2015, The Journal of the Acoustical Society of America.

[393]  B. Gerardot,et al.  Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2 , 2015, Nano letters.

[394]  Hyuk-Sang Kwon,et al.  Self-powered deep brain stimulation via a flexible PIMNT energy harvester , 2015 .

[395]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS , 2015, 1508.06222.

[396]  J. R. Raney,et al.  Multistable Architected Materials for Trapping Elastic Strain Energy , 2015, Advanced materials.

[397]  Jin-Ho Cho,et al.  A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model , 2015, Scientific Reports.

[398]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[399]  Jiangxue Wang,et al.  Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation. , 2015, ACS nano.

[400]  A. Nemati,et al.  Dielectric and piezoelectric properties of porous PZT–PCN ceramics sintered at different temperatures , 2015 .

[401]  V. Thakur,et al.  Self-healing polymer nanocomposite materials: A review , 2015 .

[402]  Erjun Liang,et al.  Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires , 2015 .

[403]  Zhenrong Li,et al.  Fabrication and electrical properties of porous BS–0.64PT high temperature piezoceramics using polystyrene microsphere , 2015 .

[404]  Lain-Jong Li,et al.  Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics , 2015, Nature Communications.

[405]  Dibin Zhu,et al.  Scaling effects for piezoelectric energy harvesters , 2015, Microtechnologies for the New Millennium.

[406]  Stephen C. Conlon,et al.  An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes , 2015 .

[407]  Jun Chen,et al.  An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. , 2015, ACS nano.

[408]  Geon-Tae Hwang,et al.  A Reconfigurable Rectified Flexible Energy Harvester via Solid‐State Single Crystal Grown PMN–PZT , 2015 .

[409]  Simiao Niu,et al.  Theoretical systems of triboelectric nanogenerators , 2015 .

[410]  F. Zhang,et al.  High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting , 2015 .

[411]  Sung-Ho Shin,et al.  Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. , 2015, ACS nano.

[412]  Zhong Lin Wang,et al.  Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. , 2015, ACS nano.

[413]  Juan Bisquert,et al.  Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[414]  C. Aristégui,et al.  Soft 3D acoustic metamaterial with negative index. , 2015, Nature materials.

[415]  Bo Li,et al.  Direct Ink Writing of Three-Dimensional (K, Na)NbO3-Based Piezoelectric Ceramics , 2015, Materials.

[416]  G. Cao,et al.  A Self‐Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium‐Ion Battery for Wearable Electronics , 2015, Advanced materials.

[417]  Wenbin Li,et al.  Piezoelectricity in two-dimensional group-III monochalcogenides , 2015, Nano Research.

[418]  Seok-Jin Yoon,et al.  High Output Piezo/Triboelectric Hybrid Generator , 2015, Scientific Reports.

[419]  Zhong Lin Wang,et al.  Theory of freestanding triboelectric-layer-based nanogenerators , 2015 .

[420]  Zhong Lin Wang,et al.  Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. , 2015, ACS nano.

[421]  T. Hampton Electric Stimulation Device Approved to Treat Obesity , 2015 .

[422]  Ping Sheng,et al.  Sound absorption by subwavelength membrane structures: A geometric perspective , 2015, 1502.06358.

[423]  Tae Yun Kim,et al.  Nanopatterned textile-based wearable triboelectric nanogenerator. , 2015, ACS nano.

[424]  R. Langer,et al.  Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[425]  Y. Wang,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[426]  Dongsheng Ma,et al.  A 12-μW to 1.1-mW AIM Piezoelectric Energy Harvester for Time-Varying Vibrations With 450-nA $I_{\bm Q}$ , 2015, IEEE Transactions on Power Electronics.

[427]  Zhaona Wang,et al.  Eardrum‐Inspired Active Sensors for Self‐Powered Cardiovascular System Characterization and Throat‐Attached Anti‐Interference Voice Recognition , 2015, Advanced materials.

[428]  Bo Li,et al.  Direct ink writing of 3–3 piezoelectric composite , 2015 .

[429]  Peng Bai,et al.  Personalized keystroke dynamics for self-powered human--machine interfacing. , 2015, ACS nano.

[430]  Vijay Narayan,et al.  A Scalable Nanogenerator Based on Self‐Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency , 2014, 1505.03694.

[431]  Zhong Lin Wang,et al.  Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. , 2014, Nano letters.

[432]  Fabien Parrain,et al.  Self-Biased Inductor-less Interface Circuit for Electret-Free Electrostatic Energy Harvesters , 2014 .

[433]  Shin Hur,et al.  Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells , 2014 .

[434]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[435]  R. Xiong,et al.  An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl₃). , 2014, Angewandte Chemie.

[436]  Zhong Lin Wang,et al.  Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionized‐Air Injection: Methodology and Theoretical Understanding , 2014, Advanced materials.

[437]  Xiuhan Li,et al.  3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. , 2014, ACS nano.

[438]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[439]  James Toouli,et al.  Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. , 2014, JAMA.

[440]  Sihong Wang,et al.  In Vivo Powering of Pacemaker by Breathing‐Driven Implanted Triboelectric Nanogenerator , 2014, Advanced materials.

[441]  P. Sheng,et al.  Acoustic metasurface with hybrid resonances. , 2014, Nature materials.

[442]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[443]  Zhong Lin Wang,et al.  Woven structured triboelectric nanogenerator for wearable devices. , 2014, ACS applied materials & interfaces.

[444]  A. Arockiarajan,et al.  Analytical, numerical and experimental predictions of the effective electromechanical properties of macro-fiber composite (MFC) , 2014 .

[445]  I. Choi,et al.  Laser-induced solid-phase doped graphene. , 2014, ACS nano.

[446]  Kaustav Banerjee,et al.  Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors , 2014 .

[447]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[448]  P. Ajayan,et al.  Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets , 2014, Nature Communications.

[449]  Guang Zhu,et al.  Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators , 2014, Nano Research.

[450]  Huanyang Chen,et al.  Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface , 2014, Nature Communications.

[451]  R. Schittny,et al.  An elasto-mechanical unfeelability cloak made of pentamode metamaterials , 2014, Nature Communications.

[452]  Zhong Lin Wang,et al.  A theoretical study of grating structured triboelectric nanogenerators , 2014 .

[453]  Tae Yun Kim,et al.  Transparent Flexible Graphene Triboelectric Nanogenerators , 2014, Advanced materials.

[454]  Adam J. Stevenson,et al.  Templated Grain Growth in Macroporous Materials , 2014, 1506.08981.

[455]  Sihong Wang,et al.  Theoretical Investigation and Structural Optimization of Single‐Electrode Triboelectric Nanogenerators , 2014 .

[456]  Stephen C. Conlon,et al.  Broadband energy harvesting using acoustic black hole structural tailoring , 2014 .

[457]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[458]  R. Fisher,et al.  Electrical brain stimulation for epilepsy , 2014, Nature Reviews Neurology.

[459]  Zhong Lin Wang,et al.  Fiber-based generator for wearable electronics and mobile medication. , 2014, ACS nano.

[460]  Jitao Zhang,et al.  Enhanced acoustic wave localization effect using coupled sonic crystal resonators , 2014 .

[461]  Yongmin Yang,et al.  Metamaterials-based enhanced energy harvesting: A review , 2014 .

[462]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[463]  Chulwoo Kim,et al.  Self-Powered 30 µW to 10 mW Piezoelectric Energy Harvesting System With 9.09 ms/V Maximum Power Point Tracking Time , 2014, IEEE Journal of Solid-State Circuits.

[464]  Simiao Niu,et al.  Nanometer Resolution Self‐Powered Static and Dynamic Motion Sensor Based on Micro‐Grated Triboelectrification , 2014, Advanced materials.

[465]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[466]  Adrien Badel,et al.  Self-powered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting , 2014 .

[467]  Chang Kyu Jeong,et al.  Flexible and Large‐Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes , 2013 .

[468]  Wei He,et al.  Enhanced Acoustic Energy Harvesting Using Coupled Resonance Structure of Sonic Crystal and Helmholtz Resonator , 2013 .

[469]  James J. S. Norton,et al.  Materials and Optimized Designs for Human‐Machine Interfaces Via Epidermal Electronics , 2013, Advanced materials.

[470]  Hongsoo Choi,et al.  MEMS piezoelectric artificial basilar membrane with passive frequency selectivity for short pulse width signal modulation , 2013 .

[471]  Insu Kim,et al.  Virus-directed design of a flexible BaTiO3 nanogenerator. , 2013, ACS nano.

[472]  Sihong Wang,et al.  Theoretical study of contact-mode triboelectric nanogenerators as an effective power source , 2013 .

[473]  Long Lin,et al.  Theory of Sliding‐Mode Triboelectric Nanogenerators , 2013, Advanced materials.

[474]  Wen Liu,et al.  A transparent single-friction-surface triboelectric generator and self-powered touch sensor , 2013 .

[475]  Cheng-Wei Qiu,et al.  Redirection of sound waves using acoustic metasurface , 2013 .

[476]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[477]  Haixia Zhang,et al.  r-Shaped hybrid nanogenerator with enhanced piezoelectricity. , 2013, ACS nano.

[478]  Jongmin Shim,et al.  3D Soft Metamaterials with Negative Poisson's Ratio , 2013, Advanced materials.

[479]  Zhong Lin Wang,et al.  Triboelectric nanogenerator built inside shoe insole for harvesting walking energy , 2013 .

[480]  Ying Yang,et al.  Self-healing polymeric materials. , 2013, Chemical Society reviews.

[481]  Adrien Badel,et al.  Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction , 2013 .

[482]  X. Xi,et al.  Processing and Properties of Porous PZT Ceramics from Particle‐Stabilized Foams via Gel Casting , 2013 .

[483]  Zhong Lin Wang,et al.  Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging , 2013, Science.

[484]  Massimo Ruzzene,et al.  Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting , 2013 .

[485]  Yongmin Yang,et al.  Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams , 2013 .

[486]  Xiaoyong Tian,et al.  Vibration energy harvesting using a phononic crystal with point defect states , 2013 .

[487]  Zhong Lin Wang,et al.  Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. , 2012, Nano letters.

[488]  Long Lin,et al.  Self-powered magnetic sensor based on a triboelectric nanogenerator. , 2012, ACS nano.

[489]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[490]  M. Belluscio,et al.  Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation , 2012, Science.

[491]  M. Levin,et al.  Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. , 2012, Annual review of biomedical engineering.

[492]  Xiaogeng Tian,et al.  Band structures of two dimensional solid/air hierarchical phononic crystals , 2012 .

[493]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[494]  Jian Shi,et al.  Piezopotential-driven redox reactions at the surface of piezoelectric materials. , 2012, Angewandte Chemie.

[495]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[496]  Samuel Ibekwe,et al.  A review of stimuli-responsive polymers for smart textile applications , 2012 .

[497]  Dong Sam Ha,et al.  Low-Power Design of a Self-powered Piezoelectric Energy Harvesting System With Maximum Power Point Tracking , 2012, IEEE Transactions on Power Electronics.

[498]  Nicolas Y. Masse,et al.  Reach and grasp by people with tetraplegia using a neurally controlled robotic arm , 2012, Nature.

[499]  M. Wegener,et al.  On the feasibility of pentamode mechanical metamaterials , 2012, 1203.1481.

[500]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[501]  P. Ye,et al.  The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition , 2012, 1202.3391.

[502]  Antônio Carlos M. de Queiroz,et al.  The Doubler of Electricity Used as Battery Charger , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[503]  Bernard H. Stark,et al.  Start-up circuit with low minimum operating power for microwatt energy harvesters , 2011, IET Circuits Devices Syst..

[504]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[505]  B. Grzybowski,et al.  The Mosaic of Surface Charge in Contact Electrification , 2011, Science.

[506]  Rui Guo,et al.  Piezoelectric Properties of the 1–3 Type Porous Lead Zirconate Titanate Ceramics , 2011 .

[507]  T. Kuiken,et al.  Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. , 2011, Brain : a journal of neurology.

[508]  Ying Wu,et al.  Elastic metamaterials with simultaneously negative effective shear modulus and mass density. , 2011, Physical review letters.

[509]  Wen-Jong Wu,et al.  Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting , 2010 .

[510]  Zhong Lin Wang,et al.  Toward self-powered sensor networks , 2010 .

[511]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[512]  Zhong Lin Wang,et al.  Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. , 2010, ACS nano.

[513]  A. Biraben,et al.  Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs , 2010, Appetite.

[514]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[515]  Serkan Gurkan,et al.  Design of a Novel Efficient Human–Computer Interface: An Electrooculagram Based Virtual Keyboard , 2010, IEEE Transactions on Instrumentation and Measurement.

[516]  G. Zhu,et al.  Muscle‐Driven In Vivo Nanogenerator , 2010, Advanced materials.

[517]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[518]  P. Bonato Wearable Sensors and Systems , 2010, IEEE Engineering in Medicine and Biology Magazine.

[519]  C. Nan,et al.  Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA‐Based Gel‐Casting Process , 2010 .

[520]  J. Dugundji,et al.  Modeling and experimental verification of proof mass effects on vibration energy harvester performance , 2010 .

[521]  Wei Chung Wang,et al.  Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal , 2010 .

[522]  Satoyuki Kawano,et al.  Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea , 2010 .

[523]  Meiling Zhu,et al.  Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[524]  Youfan Hu,et al.  Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. , 2010, ACS nano.

[525]  Ming-Hui Lu,et al.  Phononic crystals and acoustic metamaterials , 2009 .

[526]  F. Calle,et al.  Static and dynamic determination of the mechanical properties of nanocrystalline diamond micromachined structures , 2009 .

[527]  A. Bard,et al.  Electrons on dielectrics and contact electrification , 2009 .

[528]  Lien-Wen Chen,et al.  Acoustic energy harvesting using resonant cavity of a sonic crystal , 2009 .

[529]  Stefano Gonella,et al.  Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting , 2009 .

[530]  Qing-Ming Wang,et al.  Piezoelectric Energy Harvesting using Single Crystal Pb(Mg1/3Nb2/3)O 3-xPbTiO3 (PMN-PT) Device , 2009 .

[531]  Zhong Lin Wang,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[532]  H. Ozden,et al.  Acute urodynamic effects of percutaneous posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with Parkinson's disease , 2009, Neurourology and urodynamics.

[533]  Saibal Roy,et al.  Self-powered autonomous wireless sensor node using vibration energy harvesting , 2008 .

[534]  Zhong Lin Wang,et al.  Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. , 2008, Nano letters.

[535]  G. Barabino,et al.  Pulsed electromagnetic fields enhance BMP‐2 dependent osteoblastic differentiation of human mesenchymal stem cells , 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[536]  P. Gargiulo,et al.  Restoration of muscle volume and shape induced by electrical stimulation of denervated degenerated muscles: qualitative and quantitative measurement of changes in rectus femoris using computer tomography and image segmentation. , 2008, Artificial organs.

[537]  Hyoun‐Ee Kim,et al.  Piezoelectric Properties of PZT‐Based Ceramic with Highly Aligned Pores , 2008 .

[538]  Tahir Cagin,et al.  Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect , 2008 .

[539]  L. McCarty,et al.  Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. , 2008, Angewandte Chemie.

[540]  B. Mattiasson,et al.  Smart polymers: Physical forms and bioengineering applications , 2007 .

[541]  Hyoun‐Ee Kim,et al.  Fabrication of Porous PZT–PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene‐Based Freeze Casting , 2007 .

[542]  E. Hwang,et al.  A Polymer-Based Flexible Tactile Sensor for Both Normal and Shear Load Detections and Its Application for Robotics , 2007, Journal of Microelectromechanical Systems.

[543]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[544]  X. Dong,et al.  Processing and piezoelectric properties of porous PZT ceramics , 2007 .

[545]  B. Legrand,et al.  Complete System for Wireless Powering and Remote Control of Electrostatic Actuators by Inductive Coupling , 2007, IEEE/ASME Transactions on Mechatronics.

[546]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[547]  X. Dong,et al.  Preparation and properties of porous PMN-PZT ceramics doped with strontium , 2006 .

[548]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[549]  X. Dong,et al.  The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application , 2006 .

[550]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[551]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[552]  Thomas Daue,et al.  Overview on macrofiber composite applications , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[553]  S. Priya,et al.  Realization of high-energy density polycrystalline piezoelectric ceramics , 2006 .

[554]  D. Guyomar,et al.  Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction , 2005 .

[555]  D. Guyomar,et al.  Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion , 2005 .

[556]  D. K. Kharat,et al.  Study on pore-forming agents in processing of porous piezoceramics , 2005 .

[557]  Humberto Nicolini,et al.  A Patient with a Resistant Major Depression Disorder Treated with Deep Brain Stimulation in the Inferior Thalamic Peduncle , 2005, Neurosurgery.

[558]  M. Yoshida,et al.  Compliant grasp in a myoelectric hand prosthesis , 2005, IEEE Engineering in Medicine and Biology Magazine.

[559]  M. Gioia,et al.  Changes in polyamines, c‐myc and c‐fos gene expression in osteoblast‐like cells exposed to pulsed electromagnetic fields , 2005, Bioelectromagnetics.

[560]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[561]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[562]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[563]  J. Jankovic,et al.  Vagus nerve stimulation for essential tremor , 2003, Neurology.

[564]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[565]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply , 2002 .

[566]  Joseph Cesarano,et al.  Piezoelectric properties of 3-X periodic Pb(ZrxTi1−x)O3–polymer composites , 2002 .

[567]  J. Harman,et al.  Pulsed electrostatic fields (ETG) to reduce hair loss in women undergoing chemotherapy for breast carcinoma: A pilot study , 2002, Psycho-oncology.

[568]  J. Spadaro,et al.  In Vivo and In Vitro Effects of a Pulsed Electromagnetic Field on Net Calcium Flux in Rat Calvarial Bone , 2002, Calcified Tissue International.

[569]  Marco Ceccarelli,et al.  A novel articulated mechanism mimicking the motion of index fingers , 2002, Robotica.

[570]  B. J. Kane,et al.  A traction stress sensor array for use in high-resolution robotic tactile imaging , 2000, Journal of Microelectromechanical Systems.

[571]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[572]  H. Flor,et al.  A spelling device for the paralysed , 1999, Nature.

[573]  M. Piccolino Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology , 1997, Trends in Neurosciences.

[574]  Thad Starner,et al.  Human-Powered Wearable Computing , 1996, IBM Syst. J..

[575]  N Accornero,et al.  Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson's disease and drug-induced parkinsonism. , 1994, Brain : a journal of neurology.

[576]  G. Gentzkow,et al.  Electrical stimulation to heal dermal wounds. , 1993, The Journal of dermatologic surgery and oncology.

[577]  W. Sollecito,et al.  ELECTROTRICHOGENESIS: FURTHER EVIDENCE OF EFFICACY AND SAFETY ON EXTENDED USE , 1992, International journal of dermatology.

[578]  A. Diaz,et al.  Contact electrification: ion transfer to metals and polymers , 1991 .

[579]  J. James,et al.  The Biological Effects of a Pulsed Electrostatic Field with Specific Reference to Hair Electrotrichogenesis , 1990, International journal of dermatology.

[580]  W. R. Adey,et al.  Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[581]  G. Békésy,et al.  Travelling Waves as Frequency Analysers in the Cochlea , 1970, Nature.

[582]  Eiichi Fukada,et al.  On the Piezoelectric Effect of Bone , 1957 .

[583]  B. Youn,et al.  Phononic band gap of a quarter-wave stack for enhanced piezoelectric energy harvesting , 2021 .

[584]  Dou Zhang,et al.  Porous ferroelectric materials for energy technologies: current status and future perspectives , 2021, Energy & Environmental Science.

[585]  A. Fiorillo,et al.  Triboelectric-induced Pseudo-ICG for cardiovascular risk assessment on flexible electronics , 2020 .

[586]  Steve Beeby,et al.  Recent progress on textile-based triboelectric nanogenerators , 2019, Nano Energy.

[587]  Feng Zhou,et al.  Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting , 2019, Nano Energy.

[588]  Jiansheng Guo,et al.  ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[589]  Zhiming Lin,et al.  Large‐Scale and Washable Smart Textiles Based on Triboelectric Nanogenerator Arrays for Self‐Powered Sleeping Monitoring , 2018 .

[590]  Zhong Lin Wang,et al.  Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy , 2018 .

[591]  Shahjadi Hisan Farjana,et al.  Recent Advances in Nanogenerator‐Driven Self‐Powered Implantable Biomedical Devices , 2018 .

[592]  Jianhua Hao,et al.  Environmentally Friendly Hydrogel‐Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self‐Powered Sensors , 2017 .

[593]  Tae Yun Kim,et al.  Boosting Power‐Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties , 2017 .

[594]  Zhong‐Lin Wang,et al.  A Highly Stretchable Fiber‐Based Triboelectric Nanogenerator for Self‐Powered Wearable Electronics , 2017 .

[595]  Dimitri Galayko,et al.  Series-Parallel Charge Pump Conditioning Circuits for Electrostatic Kinetic Energy Harvesting , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[596]  Zhong Lin Wang,et al.  Triboelectric nanogenerators as self-powered active sensors , 2015 .

[597]  Guang Zhu,et al.  Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. , 2014, Nano letters.

[598]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[599]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[600]  Y. Yuan,et al.  Self healing in polymers and polymer composites. Concepts, realization and outlook: A review , 2008 .

[601]  M. Carr,et al.  Facial fractures , 2007 .

[602]  A. S. Bhalla,et al.  Ferroelectric ceramic-plastic composites for piezoelectric and pyroelectric applications , 1980 .

[603]  J. C. Isaacs,et al.  Crosstalk in uniformly coupled lossy transmission lines , 1973 .

[604]  Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis , 2022 .