Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation

Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.

[1]  Ghassan Hamarneh,et al.  Bilateral Filtering of Diffusion Tensor Magnetic Resonance Images , 2007, IEEE Transactions on Image Processing.

[2]  Suyash P. Awate,et al.  Feature-Preserving MRI Denoising: A Nonparametric Empirical Bayes Approach , 2007, IEEE Transactions on Medical Imaging.

[3]  Carlo Pierpaoli,et al.  Error Propagation Framework for Diffusion Tensor Imaging via Diffusion Tensor Representations , 2007, IEEE Transactions on Medical Imaging.

[4]  Jerry L. Prince,et al.  Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T , 2007, NeuroImage.

[5]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[6]  F. Ståhlberg,et al.  Denoising of complex MRI data by wavelet‐domain filtering: Application to high‐b‐value diffusion‐weighted imaging , 2006, Magnetic resonance in medicine.

[7]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[8]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[9]  V. Wedeen,et al.  Diffusion Tensor Magnetic Resonance Imaging Mapping the Fiber Architecture Remodeling in Human Myocardium After Infarction: Correlation With Viability and Wall Motion , 2006, Circulation.

[10]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[11]  Arnold W. M. Smeulders,et al.  Sparse representation for coarse and fine object recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Onur G. Guleryuz,et al.  Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: adaptive algorithms , 2006, IEEE Transactions on Image Processing.

[13]  Onur G. Guleryuz,et al.  Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory , 2006, IEEE Transactions on Image Processing.

[14]  James Gee,et al.  Spinal cord diffusion tensor imaging and fiber tracking can identify white matter tract disruption and glial scar orientation following lateral funiculotomy. , 2005, Journal of neurotrauma.

[15]  M. Ladd,et al.  A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle , 2005, NMR in biomedicine.

[16]  Onur G. Guleryuz,et al.  A nonlinear loop filter for quantization noise removal in hybrid video compression , 2005, IEEE International Conference on Image Processing 2005.

[17]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[18]  Bin Chen,et al.  Noise removal in magnetic resonance diffusion tensor imaging , 2005, Magnetic resonance in medicine.

[19]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[21]  J. Zhang,et al.  Reconstruction of Cardiac Ventricular Geometry and Fiber Orientation Using Magnetic Resonance Imaging , 2000, Annals of Biomedical Engineering.

[22]  Pierre Vandergheynst,et al.  Sparse decomposition over multi-component redundant dictionaries , 2004, IEEE 6th Workshop on Multimedia Signal Processing, 2004..

[23]  Aleksandra Pizurica,et al.  A versatile wavelet domain noise filtration technique for medical imaging , 2003, IEEE Transactions on Medical Imaging.

[24]  N. Papadakis,et al.  Minimal gradient encoding for robust estimation of diffusion anisotropy. , 2000, Magnetic resonance imaging.

[25]  P. Basser,et al.  Statistical artifacts in diffusion tensor MRI (DT‐MRI) caused by background noise , 2000, Magnetic resonance in medicine.

[26]  A. R. Summers,et al.  A wavelet-based method for improving signal-to-noise ratio and contrast in MR images. , 2000, Magnetic resonance imaging.

[27]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[28]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[29]  P. Basser,et al.  A simplified method to measure the diffusion tensor from seven MR images , 1998, Magnetic resonance in medicine.

[30]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[31]  A. Macovski Noise in MRI , 1996, Magnetic resonance in medicine.

[32]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[33]  W. Y. Liu,et al.  1 - Un nouvel opérateur pour la détection de ruptures dans des signaux bruités , 1995 .

[34]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[35]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[36]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[37]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[38]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .