A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling

Abstract : Geochemical reaction path modeling is useful for rapidly assessing the extent of water-aqueous-gas interactions both in natural systems and in industrial processes. Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account for the relatively slow kinetics of mineral-gas-water interactions. We have therefore compiled parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including phases from all the major classes of silicates, most carbonates, and many other non-silicates. These data have been added to a computer code that simulates an infinitely well-stirred batch reactor, allowing computation of mass transfer as a function of time. Actual equilibration rates are expected to be much slower than those predicted by the selected computer code, primarily because actual geochemical processes commonly involve flow through porous or fractured media, wherein the development of concentration gradients in the aqueous phase near mineral surfaces, which results in decreased absolute chemical affinity and slower reaction rates. Further differences between observed and computed reaction rates may occur because of variables beyond the scope of most geochemical simulators, such as variation in grain size, aquifer heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary minerals that may lead to decreased porosity and clogged pore throats.

[1]  Lei Chou,et al.  Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor , 1984 .

[2]  G. Kameia,et al.  The kinetics of reactions between pyrite and O2-bearing water revealed from in situ monitoring of DO, Eh and pH in a closed system , 2000 .

[3]  Yitian Xiao,et al.  Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H3O+) catalysis , 1994 .

[4]  A. Mucci Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: Quantitative influence of orthophosphate ions , 1986 .

[5]  E. L. Sjöberg,et al.  A fundamental equation for calcite dissolution kinetics , 1976 .

[6]  George W. Luther,et al.  Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation , 1997 .

[7]  E. Oelkers,et al.  Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis , 1995 .

[8]  J. Scharer,et al.  Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution , 2000 .

[9]  S. Welch,et al.  Feldspar dissolution in acidic and organic solutions: Compositional and pH dependence of dissolution rate , 1996 .

[10]  B. Bazin,et al.  Chemistry of oil-field brines in relation to diagenesis of reservoirs 1. Use of mineral stability fields to reconstruct in situ water composition. Example of the Mahakam basin , 1997 .

[11]  C. Pantano,et al.  Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution , 2001 .

[12]  Hojatollah Vali,et al.  Hydrothermal alteration of olivine in a flow-through autoclave: Nucleation and growth of serpentine phases , 2002 .

[13]  G. H. Nancollas,et al.  CHAPTER 9. MECHANISMS OF GROWTH AND DISSOLUTION OF SPARINGLY SOLUBLE SALTS , 1990 .

[14]  Roland Hellmann,et al.  The albite-water system: Part I. The kinetics of dissolution as a function of pH at 100, 200 and 300°C , 1994 .

[15]  G. R. Holdren,et al.  Dissolution rates of plagioclase at pH = 2 and 3 , 1991 .

[16]  G. A. Parks,et al.  Dissolution kinetics of magnesium silicates , 1972 .

[17]  P. A. Baker,et al.  Constraints on the formation of sedimentary dolomite. , 1981, Science.

[18]  E. Busenberg,et al.  The kinetics of dissolution of dolomite in CO 2 -H 2 O systems at 1.5 to 65 degrees C and O to 1 atm PCO 2 , 1982 .

[19]  J. D. Rimstidt,et al.  The kinetics of silica-water reactions , 1980 .

[20]  H. Barnes,et al.  Precipitation and dissolution kinetics of kaolinite under hydrothermal conditions , 1992 .

[21]  A. Lasaga,et al.  The effect of dislocation density on the dissolution rate of quartz , 1990 .

[22]  D. Sibley,et al.  Kinetics of dolomitization , 1987 .

[23]  A. Lasaga Chapter 2. FUNDAMENTAL APPROACHES IN DESCRIBING MINERAL DISSOLUTION AND PRECIPITATION RATES , 1995 .

[24]  C. Faith-Ell,et al.  Dissolution kinetics and alteration of epidote in acidic solutions at 25°C , 1998 .

[25]  S. Brantley,et al.  Chemical weathering rates of pyroxenes and amphiboles , 1995 .

[26]  G. Sposito,et al.  On the temperature dependence of mineral dissolution rates , 1992 .

[27]  D. L. Parkhurst,et al.  Critical Review of the Kinetics of Calcite Dissolution and Precipitation , 1979 .

[28]  E. Oelkers,et al.  On the interpretation of closed system mineral dissolution experiments: comment on “Mechanism of kaolinite dissolution at room temperature and pressure part II: kinetic study” by Huertas et al. (1999) , 2001 .

[29]  L. N. Plummer,et al.  The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure , 1976 .

[30]  B. Wood,et al.  Rates of Hydrothermal Reactions , 1983, Science.

[31]  P. Brady Silica surface chemistry at elevated temperatures , 1992 .

[32]  J. Christoffersen,et al.  Kinetics of dissolution and growth of calcium fluoride and effects of phosphate. , 1988, Acta odontologica Scandinavica.

[33]  J. Rimstidt,et al.  Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism , 2003 .

[34]  P. Bennett,et al.  The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C , 1988 .

[35]  J. Fox,et al.  A new two-site model for hydroxyapatite dissolution in acidic media☆ , 1978 .

[36]  H. Barnes,et al.  Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures , 1986 .

[37]  J. Drever,et al.  rates of feldspar dissolution at pH 3–7 with 0–8 m M oxalic acid , 1996 .

[38]  D. Bosbach,et al.  Crystal growth and dissolution kinetics of gypsum and fluorite; an in situ scanning force microscope study , 1995 .

[39]  L. M. Walter,et al.  Kinetics of feldspar and quartz dissolution at 70–80°C and near-neutral pH: effects of organic acids and NaCl , 1999 .

[40]  P. Dove,et al.  Mineral/solution reaction rates in a mixed flow reactor: Wollastonite hydrolysis , 1986 .

[41]  C. Clemency,et al.  The kinetics of dissolution of muscovites at 25°C and 1 atm CO2 partial pressure , 1981 .

[42]  R. Petrovich Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates—II. Deformation and dissolution of oxides and silicates in the laboratory and at the Earth's surface , 1981 .

[43]  S. Gíslason,et al.  The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11 , 2001 .

[44]  T. Gedikbey,et al.  Dissolution kinetics of sepiolite from Eskisehir (Turkey) in hydrochloric and nitric acids , 1990, Clay Minerals.

[45]  T. Stone,et al.  Silica transport during steam injection into oil sands , 1986 .

[46]  R. Garrels,et al.  Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals , 1989 .

[47]  Patricia M. Dove,et al.  The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz , 1997 .

[48]  R. Berner,et al.  Dissolution kinetics of calcium carbonate in sea water; IV, Theory of calcite dissolution , 1974 .

[49]  B. Číčel,et al.  Dissolution of Smectites in Hydrochloric Acid: II. Dissolution Rate as a Function of Crystallochemical Composition , 1978 .

[50]  C. Steefel,et al.  Putting transport into water-rock interaction models , 1992 .

[51]  D. Sibley,et al.  Dolomite stoichiometry and Ostwald's Step Rule , 1992 .

[52]  A. Putnis,et al.  The dissolution of apatite in the presence of aqueous metal cations at pH 2–7 , 1998 .

[53]  L. Petrie Molecular interpretation for S02 dissolution kinetics of pyrolusite, manganite and hematite , 1995 .

[54]  Werner Stumm,et al.  On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at , 1992 .

[55]  P. Dove The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees to 300 degrees C , 1994 .

[56]  T. Pačes The kinetics of base cation release due to chemical weathering , 1990 .

[57]  C. Clemency,et al.  The dissolution kinetics of brucite, antigorite, talc, and phlogopite at room temperature and pressure , 1981 .

[58]  P. Aagaard,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar , 1984 .

[59]  S. Brantley,et al.  Dissolution of forsteritic olivine at 65°C and 2 , 2000 .

[60]  K. Knauss,et al.  Muscovite dissolution kinetics as a function of pH and time at 70°C , 1989 .

[61]  A. Lasaga,et al.  The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state , 2000 .

[62]  H. Helgeson Reaction rates in hydrothermal flow systems , 1970 .

[63]  R. Petrovich Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates—I. Deformation and dissolution of quartz under laboratory conditions , 1981 .

[64]  L. A. fluvrn The biodurability of chrysotile asbestos , 1992 .

[65]  S. Arnórsson,et al.  The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions , 1983 .

[66]  J. Ganor,et al.  The effect of pH on kaolinite dissolution rates and on activation energy , 1995 .

[67]  J. Christoffersen,et al.  The kinetics of dissolution of calcium hydroxyapatite in water at constant pH , 1978 .

[68]  Ingar F. Walder,et al.  Economic Geology , 1926, Nature.

[69]  W. Dreybrodt,et al.  Dissolution rates of minerals and their relation to surface morphology , 2002 .

[70]  R. Berner,et al.  Dissolution Mechanisms of Pyroxenes and Olivines During Weathering , 1985 .

[71]  A. Lasaga,et al.  The role of surface speciation in the dissolution of albite , 1991 .

[72]  Kazuhiro Suzuki,et al.  Experimental study of the alteration process of labradorite in acid hydrothermal solutions , 1980 .

[73]  L. Evans,et al.  DISSOLUTION OF FELDSPARS BY LOW‐MOLECULAR-WEIGHT ALIPHATIC AND AROMATIC ACIDS , 1986 .

[74]  J. Drever,et al.  Mineral dissolution rates in plot-scale field and laboratory experiments , 1993 .

[75]  J. Hem,et al.  The dissolution of kaolinite , 1965 .

[76]  P. Brady,et al.  Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C , 1989 .

[77]  G. R. Holdren,et al.  Reaction rate-surface area relationships during the early stages of weathering. II. Data on eight additional feldspars , 1987 .

[78]  K. Knauss,et al.  Dissolution kinetics of magnesite in acidic aqueous solution, a hydrothermal atomic force microscopy (HAFM) study: Step orientation and kink dynamics , 2001 .

[79]  S. Guggenheim,et al.  Forsteritic olivine: effect of crystallographic direction on dissolution kinetics , 2000 .

[80]  D. Savage,et al.  The effect of organic acids on the dissolution of K-feldspar under conditions relevant to burial diagenesis , 1989, Mineralogical Magazine.

[81]  M. Schoonen,et al.  Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes , 1991 .

[82]  C. Clemency,et al.  Dissolution Kinetics of Phlogopite. II. Open System Using an Ion-Exchange Resin , 1981 .

[83]  P. Dove,et al.  Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25°C , 1992 .

[84]  J. Morse Dissolution kinetics of calcium carbonate in sea water; VI, The near-equilibrium dissolution kinetics of calcium carbonate-rich deep sea sediments , 1978 .

[85]  W. Giggenbach Geothermal gas equilibria , 1980 .

[86]  R. Compton,et al.  The Kinetics of Calcite Dissolution/Precipitation , 1993 .

[87]  W. Dreybrodt,et al.  Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics , 2001 .

[88]  J. Palandri,et al.  Reconstruction of in situ composition of sedimentary formation waters , 2001 .

[89]  M. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C , 1991 .

[90]  G. H. Nancollas,et al.  Kinetics of Crystal Growth and Dissolution of Calcium and Magnesium Fluorides , 1976, Journal of dental research.

[91]  S. Brantley,et al.  The role of dislocations and surface morphology in calcite dissolution , 1992 .

[92]  F. Huertas,et al.  Experimental study of the hydrothermal formation of kaolinite , 1999 .

[93]  S. Banwart,et al.  Biotite dissolution at 25°C: The pH dependence of dissolution rate and stoichiometry , 1997 .

[94]  Carl I. Steefel,et al.  Reactive Transport Modeling of Geologic CO{sub 2} Sequestration in Saline Aquifers: The Influence of Intra-Aquifer Shales and the Relative Effectiveness of Structural, Solubility, and Mineral Trapping During Prograde and Retrograde Sequestration , 2001 .

[95]  E. Oelkers,et al.  An experimental study of calcite and limestone dissolution rates as a function of pH from −1 to 3 and temperature from 25 to 80°C , 1998 .

[96]  Mark A. Williamson,et al.  The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation , 1994 .

[97]  P. Bennett,et al.  Quartz dissolution in organic-rich aqueous systems , 1991 .

[98]  E. Oelkers,et al.  Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150°C and pH 9 , 1994 .

[99]  Susan L. Brantley,et al.  Kinetics of near-equilibrium calcite precipitation at 100°C: An evaluation of elementary reaction-based and affinity-based rate laws , 1995 .

[100]  E. Brosse,et al.  Assessment of anhydrite dissolution as the rate-limiting step during thermochemical sulfate reduction , 2001 .

[101]  M. Reed,et al.  Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase , 1982 .

[102]  S. Banwart,et al.  Carbon dioxide mediated dissolution of Ca-feldspar: implications for silicate weathering , 2000 .

[103]  Robert W. Gillham,et al.  Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings , 1990 .

[104]  P. Fenter,et al.  Orthoclase dissolution kinetics probed by in situ X-ray reflectivity: effects of temperature, pH, and crystal orientation , 2003 .

[105]  Shaojun Zhong,et al.  Calcite and aragonite precipitation from seawater solutions of various salinities: Precipitation rates and overgrowth compositions , 1989 .

[106]  W. Gaillard,et al.  Kinetics of calcium carbonate (calcite)-seeded crystallization: Influence of solid/solution ratio on the reaction rate constant , 1981 .

[107]  P. Zuddas,et al.  Kinetics of Calcite Precipitation from Seawater: II. The Influence of the Ionic Strength , 1998 .

[108]  C. Eggleston,et al.  Dissolution kinetics of magnesite in acidic aqueous solution: a hydrothermal atomic force microscopy study assessing step kinetics and dissolution flux , 2002 .

[109]  J. Tester,et al.  Correlating quartz dissolution kinetics in pure water from 25 to 625°C , 1994 .

[110]  A. Lasaga Chemical kinetics of water‐rock interactions , 1984 .

[111]  R. Dawe,et al.  The kinetics of calcite precipitation from a high salinity water , 1998 .

[112]  S. Altaner Comparison of Rates of Smectite Illitization with Rates of K-Feldspar Dissolution , 1986 .

[113]  K. Knauss,et al.  Diopside dissolution kinetics as a function of pH, CO2, temperature, and time , 1993 .

[114]  R. Gillham,et al.  Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics , 1988 .

[115]  G. R. Holdren,et al.  Reaction rate-surface area relationships during the early stages of weathering—I. Initial observations , 1985 .

[116]  T. Dewers,et al.  Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst , 1997 .

[117]  C. Anbeek The effect of natural weathering on dissolution rates. , 1993 .

[118]  J. Acker,et al.  The influence of pH on biotite dissolution and alteration kinetics at low temperature , 1992 .

[119]  D. Rickard,et al.  Temperature dependence of calcite dissolution kinetics between 1 and 62°C at pH 2.7 to 8.4 in aqueous solutions , 1984 .

[120]  J. J. Morgan,et al.  Dissolution kinetics of chrysotile at pH 7 to 10 , 1985 .

[121]  L. M. Walter,et al.  Effects of organic acids on the dissolution of orthoclase at 80°C and pH 6 , 1996 .

[122]  D. Grandstaff,et al.  A kinetic study of the dissolution of uraninite , 1976 .

[123]  D. Suarez,et al.  Kinetics and Mechanisms of Precipitation of Calcite as Affected by PCO2 and Organic Ligands at 25°C , 1998 .

[124]  William B. White,et al.  The kinetics of dissolution of nepheline (NaAlSiO4) , 1986 .

[125]  A. Lasaga,et al.  Free energy dependence of albite dissolution kinetics at 80°C and pH 8.8 , 1993 .

[126]  M. Lagache Contribution à l'étude de l'altération des feldspaths, dans l'eau entre 100 et 200° C, sous diverses pressions de CO2 et application à la synthèse des minéraux argileux , 1965 .

[127]  H. Renon,et al.  Dissolution of quartz into dilute alkaline solutions at 90°C: A kinetic study , 1987 .

[128]  S. Welch,et al.  The temperature dependence of bytownite feldspar dissolution in neutral aqueous solutions of inorganic and organic ligands at low temperature (5–35°C) , 2000 .

[129]  W. Hummel Comment on “On the influence of carbonate in mineral dissolution: 1. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25°C” by J. Bruno, W. Stumm, P. Wersin, and F. Brandberg , 2000 .

[130]  A. Putnis,et al.  The kinetics of barite dissolution and precipitation in water and sodium chloride brines at 44–85°C , 1993 .

[131]  A. Mucci,et al.  Calcite precipitation in seawater using a constant addition technique: A new overall reaction kinetic expression , 1993 .

[132]  F. Mackenzie,et al.  The dolomite problem; control of precipitation kinetics by temperature and saturation state , 1999 .

[133]  W. Fyfe,et al.  The solubility of quartz in H2O in the range 1000–4000 bars and 400–550°C , 1964 .

[134]  G. Furrer,et al.  The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO , 1986 .

[135]  Oleg S. Pokrovsky,et al.  Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12 , 2000 .

[136]  B. Chang,et al.  Solubilities and Rates of Dissolution of Diaspore in NaOH Aqueous Solutions , 1979 .

[137]  P. Dove Reply to Comment on “Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor” , 1990 .

[138]  J. Ganor,et al.  The effect of pH and temperature on kaolinite dissolution rate under acidic conditions , 2002 .

[139]  O. E. Hileman,et al.  The aqueous dissolution kinetics of the barium/lead sulfate solid solution series at 25 and 60°C , 1991 .

[140]  D. Rickard,et al.  Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence , 1984 .

[141]  Mason B. Tomson,et al.  Precipitation and dissolution kinetics and equilibria of aqueous ferrous carbonate vs temperature , 1992 .

[142]  P. Bloom,et al.  The Kinetics of Gibbsite Dissolution in Nitric Acid1 , 1983 .

[143]  P. Zuddas,et al.  Kinetics of calcite precipitation from seawater: I. A classical chemical kinetics description for strong electrolyte solutions , 1994 .

[144]  J. Morse,et al.  The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition , 1983 .

[145]  Nicolas Spycher,et al.  Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution , 1984 .

[146]  N. M. Rose Dissolution rates of prehnite, epidote, and albite , 1991 .

[147]  Martin A. A. Schoonen,et al.  An introduction to geocatalysis , 1998 .

[148]  S. Hamza,et al.  Kinetics of dissolution of calcium fluoride crystals in sodium chloride solutions : influence of additives , 1991 .

[149]  J. Ganor,et al.  Stirring effect on kaolinite dissolution rate , 2001 .

[150]  J. Ganor,et al.  Smectite dissolution kinetics at 80°C and pH 8.8 , 2000 .

[151]  J. Ganor,et al.  Kinetics of gibbsite dissolution under low ionic strength conditions , 1999 .

[152]  E. Oelkers,et al.  Are quartz dissolution rates proportional to B.E.T. surface areas , 2001 .

[153]  V. A. Alekseyev,et al.  Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium , 1997 .

[154]  J. Walther,et al.  A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates , 1988 .

[155]  Pits, outgrowths, and inclusions as coated grain kinetic instabilities , 2002 .

[156]  Yuping Zhang,et al.  Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology , 2000 .

[157]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure Part II: kinetic study , 1999 .

[158]  E. Oelkers,et al.  Experimental study of kyanite dissolution rates as a function of chemical affinity and solution composition , 1999 .

[159]  H. Barnes,et al.  Geochemistry of Hydrothermal Ore Deposits , 1968 .

[160]  P. Fenter,et al.  Resolving orthoclase dissolution processes with atomic force microscopy and X-ray reflectivity , 2001 .

[161]  M. Lagache New data on the kinetics of the dissolution of alkali feldspars at 200°C in CO2 charged water , 1976 .

[162]  H. Nesbitt,et al.  Dissolution of populations of ultrafine grains with applications to feldspars , 1988 .

[163]  Jonathan P. Icenhower,et al.  The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength , 2000 .

[164]  P. Dove,et al.  Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws , 2000 .

[165]  P. Schweda,et al.  Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature , 1996 .

[166]  S. Chien Dissolution Rates of Phosphate Rocks1 , 1977 .

[167]  E. Oelkers,et al.  Experimental studies of halite dissolution kinetics: II. The effect of the presence of aqueous trace anions and K3Fe(CN)(6) , 1997 .

[168]  C. Steefel,et al.  A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening , 1990 .

[169]  Kathryn L. Nagy,et al.  Chemical weathering rate laws and global geochemical cycles , 1994 .

[170]  O. Pokrovsky,et al.  Forsterite surface composition in aqueous solutions: a combined potentiometric, electrokinetic, and spectroscopic approach , 2000 .

[171]  J. Dandurand,et al.  An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8, and 7.8 , 1997 .

[172]  M. Reed,et al.  Calculation of Simultaneous Chemical Equilibria in Aqueous-Mineral-Gas Systems and its Application to Modeling Hydrothermal Processes , 1998 .

[173]  J. Cama The Kinetics of Smectite Dissolution , 1994 .

[174]  A. Bauer,et al.  Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80°C , 1998 .

[175]  M. Jaurand,et al.  An XPS study of the dissolution kinetics of chrysotile in 0.1 N oxalic acid at different temperatures , 1977 .

[176]  L. N. Plummer,et al.  Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model , 1981 .

[177]  A. Lasaga,et al.  Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH− catalysis , 1996 .

[178]  S. Brantley,et al.  Diopside and anthophyllite dissolution at 25° and 90°C and acid pH , 1998 .

[179]  J. Rimstidt,et al.  The biodurability of chrysotile asbestos , 1992 .

[180]  C. Amrhein,et al.  Some factors affecting the dissolution kinetics of anorthite at 25°C , 1992 .

[181]  P. Maurice,et al.  Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristics , 1999 .

[182]  J. Hull,et al.  Geometric modeling of dissolution kinetics: Application to apatite , 1987 .

[183]  R.C.L. Jonckbloedt,et al.  Olivine dissolution in sulphuric acid at elevated temperatures—implications for the olivine process, an alternative waste acid neutralizing process , 1998 .

[184]  Werner Stumm,et al.  Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C , 1992 .

[185]  M. Lengke,et al.  Kinetic rates of amorphous As 2 S 3 oxidation at 25 to 40°C and initial pH of 7.3 to 9.4 , 2001 .

[186]  W. R. Clayton,et al.  Kinetics of Dissolution of Phosphate Rocks in Soils , 1980 .

[187]  Patrick V. Brady,et al.  Kinetics of quartz dissolution at low temperatures , 1990 .

[188]  E. Busenberg,et al.  The dissolution kinetics of feldspars at 25°C and 1 atm CO2 partial pressure , 1976 .

[189]  D. Gallup Aluminum silicate scale formation and inhibition (2): scale solubilities and laboratory and field inhibition tests , 1998 .

[190]  A. Lasaga,et al.  Interferometric study of the dolomite dissolution: a new conceptual model for mineral dissolution , 2003 .

[191]  Donald L. Suarez,et al.  Calcite nucleation and precipitation kinetics as affected by dissolved organic matter at 25°C and pH > 7.5 , 1996 .

[192]  Z. Pang,et al.  THEORETICAL CHEMICAL THERMOMETRY ON GEOTHERMAL WATERS: PROBLEMS AND METHODS , 1998 .

[193]  S. Brantley,et al.  Chemical weathering rates of silicate minerals , 1995 .

[194]  D. Rickard,et al.  The influence of experimental design on the rate of calcite dissolution , 1983 .

[195]  李幼升,et al.  Ph , 1989 .

[196]  W. Giggenbach “Geothermal mineral equilibria”. Reply to a comment by M. A. Grant , 1982 .

[197]  Oleg S. Pokrovsky,et al.  Processes at the magnesium-bearing carbonates/solution interface. II. kinetics and mechanism of magnesite dissolution. , 1999 .

[198]  M. Lengke,et al.  Reaction rates of natural orpiment oxidation at 25 to 40°C and pH 6.8 to 8.2 and comparison with amorphous As2S3 oxidation , 2002 .

[199]  E. Ilton,et al.  X-ray photoelectron spectroscopic measurement of the temperature dependence of leaching of cations from the albite surface , 2000 .

[200]  A. Konak The Kinetics of Dissolution , 1978 .

[201]  H. Hayashi,et al.  Kinetics of Dissolution of Noncrystalline Oxides and Crystalline Clay Minerals in a Basic Tiron Solution , 1990 .

[202]  R. Schuiling,et al.  Neutralization of industrial waste acids with olivine — The dissolution of forsteritic olivine at 40-70°C , 1989 .

[203]  B. Wehrli,et al.  The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals , 1988 .

[204]  A. Lasaga,et al.  Kinetics of dissolution and Sr release during biotite and phlogopite weathering , 2000 .

[205]  R. Gilkes,et al.  Acid Dissolution of Synthetic Aluminous Goethite before and after Transformation to Hematite by Heating , 1995, Clay Minerals.

[206]  A. M. Gaines Dolomitization Kinetics: Recent Experimental Studies , 1980 .

[207]  J. Donald Rimstidt,et al.  A high resolution study of forsterite dissolution rates , 2000 .

[208]  D. Vaughan,et al.  Kinetics of the marcasite-pyrite transformation; an infrared spectroscopic study , 1992 .

[209]  H. S. Fogler,et al.  Dissolution Kinetics: Catalysis by Salts , 1981 .

[210]  A. Lasaga,et al.  Dissolution and precipitation kinetics of kaolinite at 80 degrees C and pH 3; the dependence on solution saturation state , 1991 .

[211]  M. Schoonen,et al.  AN ELECTROKINETIC STUDY OF SYNTHETIC GREIGITE AND PYRRHOTITE , 1994 .

[212]  Guntram Jordan,et al.  Dissolution rates and activation energy for dissolution of brucite (001) : A new method based on the microtopography of crystal surfaces , 1996 .

[213]  T. H. Christensen,et al.  The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments , 2002 .

[214]  S. Kitahara The solubility equilibrium and the rate of solution of quartz in water at high temperatures and high pressures. , 1960 .

[215]  F. Gérard,et al.  General implications of aluminium speciation-dependent kinetic dissolution rate law in water–rock modelling , 1998 .

[216]  S. Arnórsson Chemical equilibria in icelandic geothermal systems—Implications for chemical geothermometry investigations , 1983 .

[217]  S. Brantley,et al.  Feldspar dissolution at 25°C and pH 3: Reaction stoichiometry and the effect of cations , 1995 .

[218]  A. Barton,et al.  Dissolution rates of polycrystalline samples of gypsum and orthorhombic forms of calcium sulphate by a rotating disc method , 1971 .

[219]  W. Dreybrodt,et al.  Pitfalls in the determination of empirical dissolution rate equations of minerals from experimental data and a way out: an iterative procedure to find valid rate equations, applied to Ca-carbonates and -sulphates , 2002 .

[220]  F. Huertas,et al.  Chemical, mineralogical and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25°C , 2001 .

[221]  E. Oelkers,et al.  An experimental study of calcite dissolution rates at acidic conditions and 25 °C in the presence of NaPO3 and MgCl2 , 2002 .

[222]  S. Brantley,et al.  Inhibition of calcite crystal growth by Mg2+ at 100°C and 100 bars: Influence of growth regime , 1997 .

[223]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure , 1998 .

[224]  A. Katz,et al.  The dolomitization of CaCO3: an experimental study at 252–295°C , 1977 .

[225]  W. Skinner,et al.  A mechanism to explain sudden changes in rates and products for pyrrhotite dissolution in acid solution , 2001 .

[226]  R. Smart,et al.  Kinetics and mechanisms of the leaching of low Fe sphalerite , 2003 .

[227]  E. Oelkers,et al.  An experimental study of dolomite dissolution rates as a function of pH from −0.5 to 5 and temperature from 25 to 80°C , 1999 .

[228]  P. Dove The dissolution kinetics of quartz in aqueous mixed cation solutions , 1999 .

[229]  R. Hellmann The albite-water system: Part II. The time-evolution of the stoichiometry of dissolution as a function of pH at 100, 200, and 300°C , 1995 .

[230]  Kathryn L. Nagy,et al.  Simultaneous precipitation kinetics of kaolinite and gibbsite at 80°C and pH 3 , 1993 .

[231]  Eric H. Oelkers,et al.  An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations , 2001 .

[232]  A. Lasaga,et al.  The effect of deviation from equilibrium on the kinetics of dissolution and precipitation of kaolinite and gibbsite , 1990 .

[233]  M. Hochella,et al.  Electrochemistry and dissolution kinetics of magnetite and ilmenite , 1994 .

[234]  T. Murakami,et al.  Formation of secondary minerals and its effect on anorthite dissolution , 1998 .

[235]  B. Fritz,et al.  Hydrothermal experiments and thermo-kinetic modelling of water-sandstone interactions☆ , 1994 .

[236]  P. Dove,et al.  Dissolution rate of quartz in lead and sodium electrolyte solutions between 25 and 300°C: Effect of the nature of surface complexes and reaction affinity , 1994 .

[237]  A. Lasaga,et al.  Dissolution and precipitation kinetics of gibbsite at 80°C and pH 3: The dependence on solution saturation state , 1992 .

[238]  S. Welch,et al.  The effect of organic acids on plagioclase dissolution rates and stoichiometry , 1993 .

[239]  K. Knauss,et al.  Dependence of albite dissolution kinetics on ph and time at 25°c and 70°c , 1986 .

[240]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[241]  E. Caballero,et al.  Kinetics of montmorillonite dissolution in granitic solutions , 2001 .

[242]  S. Brantley,et al.  Dissolution kinetics of strained calcite , 1989 .

[243]  R. Wogelius,et al.  Olivine dissolution kinetics at near-surface conditions , 1992 .

[244]  Kathryn L. Nagy,et al.  Dissolution and precipitation kinetics of sheet silicates , 1995 .

[245]  Donald L. Suarez,et al.  The use of a surface complexation model to describe the kinetics of ligand-promoted dissolution of anorthite , 1988 .

[246]  Lei Chou,et al.  Steady-state kinetics and dissolution mechanisms of albite , 1985 .

[247]  D. Siegel,et al.  Silicate mineral dissolution at pH 4 and near standard temperature and pressure , 1984 .

[248]  R. Berner,et al.  Mechanism of pyroxene and amphibole weathering-I. Experimental studies of iron-free minerals , 1981 .

[249]  E. Oelkers,et al.  The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions , 1994 .

[250]  T. Dewers,et al.  Dissolution and time-dependent compaction of albite sand: experiments at 100°C and 160°C in pH-buffered organic acids and distilled water , 1998 .

[251]  T. Murakami,et al.  The effect of partial pressure of carbon dioxide on anorthite dissolution , 1999 .

[252]  R. Scotford,et al.  Effect of temperature on the rates of dissolution of gibbsite and boehmite , 1971 .

[253]  S. Arnórsson,et al.  Fluid/mineral equilibrium calculations for geothermal fluids and chemical geothermometry , 1993 .

[254]  R. Scotford,et al.  The effect of concentration on the rates of dissolution of gibbsite and boehmite , 1972 .

[255]  G. R. Holdren,et al.  Mechanism of feldspar weathering—I. Experimental studies , 1979 .

[256]  P. Holmes,et al.  The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study , 2000 .

[257]  E. Oelkers,et al.  Experimental studies of halite dissolution kinetics, 1 the effect of saturation state and the presence of trace metals , 1997 .

[258]  J. Rimstidt,et al.  Wollastonite: Incongruent dissolution and leached layer formation , 2000 .

[259]  Martin A. A. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C , 1991 .

[260]  J. Fox,et al.  A possible second site for hydroxyapatite dissolution in acidic media , 1978 .

[261]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[262]  K. Knauss,et al.  The dissolution kinetics of quartz as a function of pH and time at 70°C , 1988 .

[263]  D. Nordstrom,et al.  Initiation of aqueous pyrite oxidation by dissolved oxygen and by ferric iron , 1987 .

[264]  C. Viscoli,et al.  Reply to Wu , 2004 .

[265]  L. Chou,et al.  Kaolinite dissolution rates in batch experiments at room temperature and pressure: reply to “on the interpretation of closed system mineral dissolution experiments,” comment by Eric H. Oelkers, Jacques Schott, and Jean-Luc Devidal , 2001 .

[266]  J. Overbeek,et al.  THE SOLUBILITY OF QUARTZ , 1960 .

[267]  P. Dove,et al.  Crystal chemical controls on the dissolution kinetics of the isostructural sulfates: Celestite, anglesite, and barite , 1995 .

[268]  Randall T. Cygan,et al.  The dissolution kinetics of mixed-cation orthosilicate minerals , 1993 .

[269]  J. Drever,et al.  Mechanism of plagioclase dissolution in acid solution at 25°C , 1994 .

[270]  K. Knauss,et al.  The effect of malonate on the dissolution kinetics of albite, quartz, and microcline as a function of pH at 70°C , 1995 .

[271]  A. Packter,et al.  Studies on recrystallised aluminium hydroxide precipitates , 1974 .

[272]  J. Ganor,et al.  Column experiments and the full dissolution rate law of gibbsite , 1996 .

[273]  R. Wogelius,et al.  Olivine dissolution at 25°C: Effects of pH, CO2, and organic acids , 1991 .

[274]  J. Herman,et al.  Pyrite oxidation at circumneutral pH , 1991 .

[275]  Guntram Jordan,et al.  Dissolution Rates of Calcite (104) Obtained by Scanning Force Microscopy: Microtopography-Based Dissolution Kinetics on Surfaces with Anisotropic Step Velocities , 1998 .

[276]  D. Rickard,et al.  The effect of added dissolved calcium on calcite dissolution kinetics in aqueous solutions at 25°C , 1985 .

[277]  M. Lengke,et al.  Natural realgar and amorphous AsS oxidation kinetics , 2003 .

[278]  J. Dandurand,et al.  The dissolution of calcite in seawater from 40° to 90°C at atmospheric pressure and 35‰ salinity , 1992 .

[279]  F. Mackenzie,et al.  Experimental Study of Igneous and Sedimentary Apatite Dissolution: Control of pH, Distance from Equilibrium, and Temperature on Dissolution Rates , 2003 .

[280]  Paul R. Bloom,et al.  An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8 , 1985 .

[281]  H. Helgeson,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. III. Activated complexes and the pH-dependence of the rates of feldspar, pyroxene, wollastonite, and olivine hydrolysis , 1987 .

[282]  P. Aagaard,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations , 1982 .

[283]  W. House Kinetics of crystallisation of calcite from calcium bicarbonate solutions , 1981 .

[284]  W. Gunter,et al.  Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modelling , 1997 .

[285]  D. Rickard Kinetics and mechanism of pyrite formation at low temperatures , 1975 .

[286]  H. Helgeson,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; IV, Retrieval of rate constants and activation parameters for the hydrolysis of pyroxene, wollastonite, olivine, andalusite, quartz, and nepheline , 1989 .

[287]  J. Rimstidt,et al.  Rates of reaction of pyrite and marcasite with ferric iron at pH 2 , 1984 .

[288]  Edward W. Bolton,et al.  An interferometric study of the dissolution kinetics of anorthite; the role of reactive surface area , 1999 .