Analysis of 1.2μm InGaAs∕GaAs quantum dot laser for high power applications

The effect of modulation p-doping on the characteristics of 1.2μm quantum dot lasers is reported. Compared to undoped devices, p-doped are shown to exhibit higher saturated gain, higher internal efficiency, improved T0, lower excited state lasing current densities, and higher internal loss. Both types of the device are analyzed with regard to high power applications in the extreme cases of complete and nonexistent gain clamping. Results from a laser optimized to have minimal threshold current are discussed.

[1]  S. Höfling,et al.  1240nm high-power GaInNAs laser diodes. , 2007, Optics express.

[2]  Kristian M. Groom,et al.  Effects of photon and thermal coupling mechanisms on the characteristics of self-assembled InAs/GaAs quantum dot lasers , 2007 .

[3]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[4]  R. Balda,et al.  Spectroscopy and concentration quenching of the infrared emissions in Tm(3+)-doped TeO(2)-TiO(2)-Nb(2)O(5) glass. , 2007, Optics express.

[5]  Kerry J. Vahala,et al.  Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions , 1988 .

[6]  Y. Uematsu,et al.  Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers , 1985, IEEE Journal of Quantum Electronics.

[7]  Kristian M. Groom,et al.  1.3 μm InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature , 2006 .

[8]  Peter Michael Smowton,et al.  Gain in p-doped quantum dot lasers , 2007 .

[9]  A. Fiore,et al.  Intraband carrier photoexcitation in quantum dot lasers. , 2008, Nano letters.

[10]  Mitsuru Sugawara,et al.  Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs∕GaAs quantum-dot lasers , 2005 .

[11]  D. A. Livshits,et al.  Output power and its limitation in ridge-waveguide 1.3 µm wavelength quantum-dot lasers , 2003 .

[12]  O. Shchekin,et al.  Discrete energy level separation and the threshold temperature dependence of quantum dot lasers , 2000 .

[13]  M. Henini,et al.  Thermal effects in quantum dot lasers , 1999 .

[14]  Dennis G. Deppe,et al.  Quantum dot laser diode with low threshold and low internal loss , 2009 .

[15]  Andrea Fiore,et al.  Two-state switching and dynamics in quantum dot two-section lasers , 2006 .

[16]  Yasuhiko Arakawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers , 2003, Proceedings of the IEEE.

[17]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[18]  P. Blood,et al.  State filling in InAs quantum-dot laser structures , 2004, IEEE Journal of Quantum Electronics.

[19]  Nikolai N. Ledentsov,et al.  Gain characteristics of quantum dot injection lasers , 1999 .

[20]  Ben J. Stevens,et al.  p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency , 2006 .

[21]  M. Hopkinson,et al.  High-performance three-layer 1.3-/spl mu/m InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents , 2005, IEEE Photonics Technology Letters.

[22]  M. S. Skolnick,et al.  Enhanced nonradiative Auger recombination in p-type modulation doped InAs/GaAs quantum dots , 2008 .

[23]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[24]  M. Hopkinson,et al.  Observation and Modeling of a Room-Temperature Negative Characteristic Temperature 1.3-$\mu$m p-Type Modulation-Doped Quantum-Dot Laser , 2006, IEEE Journal of Quantum Electronics.

[25]  Yasuhiko Arakawa,et al.  Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments , 2004 .

[26]  M. Ishida,et al.  Systematic Study of the Effects of Modulation p-Doping on 1.3-$\mu{\hbox {m}}$ Quantum-Dot Lasers , 2007, IEEE Journal of Quantum Electronics.

[27]  Joo-Heon Ahn,et al.  High temperature performance of self-organised quantum dot laser with stacked p-doped active region , 2002 .

[28]  M. Weyers,et al.  High-power highly strained InGaAs quantum-well lasers operating at 1.2 μm , 2002, IEEE Photonics Technology Letters.

[29]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[30]  Frank Bugge,et al.  High-power and highly efficient Tm3+-doped silica fiber lasers pumped with diode lasers operating at 1150 nm. , 2007, Optics letters.

[31]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .