Breaking the field-of-view limit in augmented reality with a scanning waveguide display

The ultimate augmented reality (AR) should be a glass-type see-through display with uncompromised optical performances. The major technical challenge of present AR display systems is to fulfill wide field-of-view (FOV) and large eye box simultaneously for a comfortable visual experience. Here, we propose a novel scanning waveguide display to break the theoretical limit of present waveguide displays while maintaining a large eye box. The core component is an off-axis reflective lens array, which is fabricated by an innovative chiral liquid crystal polarization holography method. The lens array consists of 8 × 15 lenslets whose pitch length is 2 mm and f-number is 0.41 at 639 nm. Such a scanning waveguide display dramatically extends the diagonal FOV from the state-of-the-art 52° (HoloLens 2) to 100°. These approaches not only significantly advance the optical design of present AR display systems but also open new applications to a broad range of optical systems, including high-precision imaging, sensing, and advanced photonic devices.

[1]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[2]  L. Marrucci,et al.  Electromagnetic Confinement via Spin–Orbit Interaction in Anisotropic Dielectrics , 2016, ACS photonics.

[3]  Peter Shirley,et al.  Near-eye varifocal augmented reality display using see-through screens , 2017, ACM Trans. Graph..

[4]  G Westheimer,et al.  The Maxwellian view. , 1966, Vision research.

[5]  Yongtian Wang,et al.  Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms. , 2015, Optics express.

[6]  Q. Wei,et al.  Liquid Crystal Pancharatnam–Berry Micro‐Optical Elements for Laser Beam Shaping , 2018, Advanced Optical Materials.

[7]  S. Nolte,et al.  Self-Trapping of Light Using the Pancharatnam-Berry Phase , 2018, Physical Review X.

[8]  Hoi Sing Kwok,et al.  Photoalignment of Liquid Crystalline Materials: Physics and Applications , 2008 .

[9]  Zhanhua Huang,et al.  Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics. , 2017, Optics express.

[10]  Joohwan Kim,et al.  Foveated AR , 2019, ACM Trans. Graph..

[11]  Kelvin H. Wagner,et al.  Holographic diffraction in photoanisotropic organic materials , 1993 .

[12]  M. Kudenov,et al.  Fabrication of ideal geometric-phase holograms with arbitrary wavefronts , 2015 .

[13]  J. Geng Three-dimensional display technologies. , 2013, Advances in optics and photonics.

[14]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[15]  H. Urbach,et al.  Photoanisotropic polarization gratings beyond the small recording angle regime. , 2010, Optics express.

[16]  Ki Tae Nam,et al.  Outfitting Next Generation Displays with Optical Metasurfaces , 2018, ACS Photonics.

[17]  Giuseppe Claudio Guarnera,et al.  Woven Fabric Model Creation from a Single Image , 2017, ACM Trans. Graph..

[18]  Nelson V. Tabiryan,et al.  Diffractive waveplate arrays [Invited] , 2017 .

[19]  Milan Momcilo Popovich,et al.  DigiLens switchable Bragg grating waveguide optics for augmented reality applications , 2018, Photonics Europe.

[20]  Shin‐Tson Wu,et al.  A versatile method for fabricating Pancharatnam-Berry micro-optical elements. , 2019, Optics express.

[21]  Yun-Han Lee,et al.  Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays. , 2017, Optics express.

[22]  Byoungho Lee,et al.  Metasurface eyepiece for augmented reality , 2018, Nature Communications.

[23]  Boris Ya Zeldovich,et al.  Broadband waveplate lenses. , 2016, Optics express.

[24]  Christophe Moser,et al.  Curved Holographic Combiner for Color Head Worn Display , 2014, Journal of Display Technology.

[25]  Hong Hua,et al.  High-performance integral-imaging-based light field augmented reality display using freeform optics. , 2018, Optics express.

[26]  Federico Capasso,et al.  Generation of wavelength-independent subwavelength Bessel beams using metasurfaces , 2016, Light: Science & Applications.

[27]  Bernard C. Kress,et al.  Optical waveguide combiners for AR headsets: features and limitations , 2019, Other Conferences.

[28]  Burak Soner,et al.  Light-efficient augmented reality display with steerable eyebox. , 2019, Optics express.

[29]  N. Tabirian,et al.  Periodically Aligned Liquid Crystal: Potential Application for Projection Displays , 2005 .

[30]  S. Residori,et al.  Berry Phase of Light under Bragg Reflection by Chiral Liquid-Crystal Media. , 2016, Physical review letters.

[31]  Byungsoo Kim,et al.  Transport-based neural style transfer for smoke simulations , 2019, ACM Trans. Graph..

[32]  Hiroyuki Yoshida,et al.  Planar optics with patterned chiral liquid crystals , 2016, Nature Photonics.

[33]  Tao Zhan,et al.  Multistimuli‐Responsive Self‐Organized Liquid Crystal Bragg Gratings , 2019, Advanced Optical Materials.

[34]  C. B. de Araújo,et al.  Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium. , 2016, Optics letters.

[35]  Xiao-Ning Pang,et al.  A broadband achromatic metalens array for integral imaging in the visible , 2019, Light: Science & Applications.

[36]  Luciano De Sio,et al.  Digital polarization holography advancing geometrical phase optics. , 2016, Optics express.

[37]  Jae-Hyeung Park,et al.  Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. , 2018, Optics letters.

[38]  Jianghao Xiong,et al.  Device simulation of liquid crystal polarization gratings. , 2019, Optics express.

[39]  L. Marrucci,et al.  Guiding light via geometric phases , 2015, Nature Photonics.

[40]  Byoungho Lee,et al.  Holographic display for see-through augmented reality using mirror-lens holographic optical element. , 2016, Optics letters.

[41]  Yongtian Wang,et al.  Design of a wide-angle, lightweight head-mounted display using free-form optics tiling. , 2011, Optics letters.

[42]  D. W. F. van Krevelen,et al.  A Survey of Augmented Reality Technologies, Applications and Limitations , 2010, Int. J. Virtual Real..

[43]  A. Rohrbach,et al.  Microscopy with self-reconstructing beams , 2010 .

[44]  Baoping Wang,et al.  Liquid-crystal-based polarization volume grating applied for full-color waveguide displays. , 2018, Optics letters.

[45]  M. Peccianti,et al.  Tunable refraction and reflection of self-confined light beams , 2006 .

[46]  B. Dörband,et al.  Handbook of optical systems , 2012 .

[47]  George Kakauridze,et al.  Polarization-holographic gratings for analysis of light. 1. Analysis of completely polarized light. , 2007, Applied optics.