Performance Capture from Multi-View Video

Nowadays, increasing performance of computing hardware makes it feasible to simulate ever more realistic humans even in real-time applications for the end-user. To fully capitalize on these computational resources, all aspects of the human, including textural appearance and lighting, and, most importantly, dynamic shape and motion have to be simulated at high fidelity in order to convey the impression of a realistic human being. In consequence, the increase in computing power is flanked by increasing requirements to the skills of the animators. In this chapter, we describe several recently developed performance capture techniques that enable animators to measure detailed animations from real world subjects recorded on multi-view video. In contrast to classical motion capture, performance capture approaches don’t only measure motion parameters without the use of optical markers, but also measure detailed spatio-temporally coherent dynamic geometry and surface texture of a performing subject. This chapter gives an overview of recent state-of-the-art performance capture approaches from the literature. The core of the chapter describes a new mesh-based performance capture algorithm that uses a combination of deformable surface and volume models for high-quality reconstruction of people in general apparel, i.e. also wide dresses and skirts. The chapter concludes with a discussion of the different approaches, pointers to additional literature and a brief outline of open research questions for the future.

[1]  Adrian Hilton,et al.  Spherical matching for temporal correspondence of non-rigid surfaces , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[2]  Andreas Kunz,et al.  blue-c: a spatially immersive display and 3D video portal for telepresence , 2003, ACM Trans. Graph..

[3]  Wojciech Matusik,et al.  Multi-scale capture of facial geometry and motion , 2007, ACM Trans. Graph..

[4]  Andrew Jones,et al.  Relighting human locomotion with flowed reflectance fields , 2006, EGSR '06.

[5]  Hans-Peter Seidel,et al.  Mesh segmentation driven by Gaussian curvature , 2005, The Visual Computer.

[6]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[7]  Takashi Matsuyama,et al.  Deformable Mesh Model for Complex Multi-Object 3D Motion Estimation from Multi-Viewpoint Video , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[8]  Jessica K. Hodgins,et al.  Capturing and animating skin deformation in human motion , 2006, SIGGRAPH 2006.

[9]  Hans-Peter Seidel,et al.  Marker-Less 3D Feature Tracking for Mesh-Based Human Motion Capture , 2007, Workshop on Human Motion.

[10]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[11]  Volker Scholz,et al.  Garment Motion Capture Using Color‐Coded Patterns , 2005, Comput. Graph. Forum.

[12]  Takeo Kanade,et al.  Image-based spatio-temporal modeling and view interpolation of dynamic events , 2005, TOGS.

[13]  Hans-Peter Seidel,et al.  Free-viewpoint video of human actors , 2003, ACM Trans. Graph..

[14]  Zoran Popovic,et al.  Articulated body deformation from range scan data , 2002, SIGGRAPH.

[15]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  Hans-Peter Seidel,et al.  Automatic Conversion of Mesh Animations into Skeleton‐based Animations , 2008, Comput. Graph. Forum.

[17]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[18]  Takeo Kanade,et al.  Virtualized Reality: Constructing Virtual Worlds from Real Scenes , 1997, IEEE Multim..

[19]  Leonidas J. Guibas,et al.  Eurographics Symposium on Geometry Processing (2007) Reconstruction of Deforming Geometry from Time-varying Point Clouds , 2022 .

[20]  Ronald Poppe,et al.  Vision-based human motion analysis: An overview , 2007, Comput. Vis. Image Underst..

[21]  Kun Zhou,et al.  Gradient domain editing of deforming mesh sequences , 2007, SIGGRAPH 2007.

[22]  Hans-Peter Seidel,et al.  A volumetric approach to interactive shape editing , 2007 .

[23]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[24]  Ramesh Raskar,et al.  Image-based visual hulls , 2000, SIGGRAPH.

[25]  Derek Bradley,et al.  Markerless garment capture , 2008, SIGGRAPH 2008.

[26]  Bernd Hamann,et al.  Discrete Sibson interpolation , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Christian Rössl,et al.  Eurographics Symposium on Point-based Graphics (2006) Template Deformation for Point Cloud Fitting , 2022 .

[28]  Hans-Peter Seidel,et al.  Marker-less Deformable Mesh Tracking for Human Shape and Motion Capture , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Michael Goesele,et al.  Multi-View Stereo Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.

[31]  Mikio Shinya Unifying measured point sequences of deforming objects , 2004 .

[32]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[33]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..

[34]  Kikuo Fujimura,et al.  Shape similarity by homotopic deformation , 2000, The Visual Computer.

[35]  Ryan White,et al.  Capturing and animating occluded cloth , 2007, SIGGRAPH 2007.

[36]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[37]  Alberto Menache,et al.  Understanding Motion Capture for Computer Animation and Video Games , 1999 .

[38]  Jovan Popovic,et al.  Continuous capture of skin deformation , 2003, ACM Trans. Graph..

[39]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[40]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[41]  Marc Levoy,et al.  The digital Michelangelo project , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[42]  Adrian Hilton,et al.  Correspondence labelling for wide-timeframe free-form surface matching , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[43]  Markus H. Gross,et al.  Adaptive Space Deformations Based on Rigid Cells , 2007, Comput. Graph. Forum.

[44]  Kiril Vidimce,et al.  Lpics: a hybrid hardware-accelerated relighting engine for computer cinematography , 2005, SIGGRAPH 2005.

[45]  Michael J. Black,et al.  Detailed Human Shape and Pose from Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Keith Waters,et al.  Computer facial animation , 1996 .

[47]  Marc Levoy,et al.  High performance imaging using large camera arrays , 2005, SIGGRAPH 2005.

[48]  Donald P. Greenberg,et al.  Efficient Rendering and Compression for Full-Parallex Computer-Generated Holographic Stereograms , 2000 .

[49]  Ayellet Tal,et al.  Mesh segmentation using feature point and core extraction , 2005, The Visual Computer.

[50]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[51]  Christian Rössl,et al.  Dense correspondence finding for parametrization-free animation reconstruction from video , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Hans-Peter Seidel,et al.  Performance capture from sparse multi-view video , 2008, SIGGRAPH 2008.

[53]  Richard Szeliski,et al.  High-quality video view interpolation using a layered representation , 2004, SIGGRAPH 2004.

[54]  Markus H. Gross,et al.  Scalable 3D video of dynamic scenes , 2005, The Visual Computer.

[55]  Adrian Hilton,et al.  Surface Capture for Performance-Based Animation , 2007, IEEE Computer Graphics and Applications.

[56]  Leonidas J. Guibas,et al.  Dynamic geometry registration , 2007, Symposium on Geometry Processing.

[57]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[58]  J Jobson Daniel,et al.  Retinex Image Processing: Improved Fidelity to Direct Visual Observation , 1996 .

[59]  Hans-Peter Seidel,et al.  Cloth X-Ray: MoCap of People Wearing Textiles , 2006, DAGM-Symposium.

[60]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[61]  Donald P. Greenberg,et al.  Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments , 2005, TOGS.