On 2-metric resolvability in rotationally-symmetric graphs

The 2-metric resolvability is an extension of metric resolvability in graphs having several applications in intelligent systems for example network optimization, robot navigation and sensor networking. Rotationally symmetric graphs are important in intelligent networks due to uniform rate of data transformation to all nodes. In this article, 2-metric dimension of rotationally symmetric plane graphs Rn, Sn and Tn is computed and found to be independent of the number of vertices.

[1]  On the 2-metric resolvability of graphs , 2020 .

[2]  Muhammad Imran,et al.  On the metric dimension of rotationally-symmetric graphs , 2016, Ars Comb..

[3]  David R. Wood,et al.  Fault-tolerant metric dimension of graphs , 2003 .

[4]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[5]  G. Ghorai,et al.  Computing F-index, coindex and Zagreb polynomials of the kth generalized transformation graphs , 2020, Heliyon.

[6]  Ismael González Yero,et al.  Error-Correcting Codes from k-Resolving Sets , 2019, Discuss. Math. Graph Theory.

[7]  Juan A. Rodríguez-Velázquez,et al.  Computing the k-metric dimension of graphs , 2017, Appl. Math. Comput..

[8]  Kolja B. Knauer,et al.  Orienting Triangulations , 2016, J. Graph Theory.

[9]  Juan A. Rodríguez-Velázquez,et al.  Relationships Between the 2-Metric Dimension and the 2-Adjacency Dimension in the Lexicographic Product of Graphs , 2016, Graphs Comb..

[10]  Alejandro Estrada Moreno The k-metric dimension of a graph , 2014 .

[11]  J. A. Rodríguez-Velázquez,et al.  The k-Metric Dimension of Corona Product Graphs , 2014 .

[12]  Juan A. Rodríguez-Velázquez,et al.  The k-metric dimension of the lexicographic product of graphs , 2016, Discret. Math..

[13]  Ganesh Ghorai,et al.  A novel graph invariant: The third leap Zagreb index under several graph operations , 2019, Discret. Math. Algorithms Appl..

[14]  Sakander Hayat,et al.  On the fault-tolerant metric dimension of convex polytopes , 2018, Appl. Math. Comput..

[15]  Tudor Zamfirescu,et al.  Fault-tolerant designs in triangular lattice networks , 2016 .

[16]  Sakander Hayat,et al.  Fault-Tolerant Resolvability and Extremal Structures of Graphs , 2019, Mathematics.

[17]  N. Duncan Leaves on trees , 2014 .

[18]  Shaojian Qu,et al.  On Mixed Metric Dimension of Rotationally Symmetric Graphs , 2020, IEEE Access.

[19]  Alejandro Estrada-Moreno,et al.  K-metric Resolvability in Graphs , 2014, Electron. Notes Discret. Math..

[20]  Peter J. Slater,et al.  Fault-tolerant locating-dominating sets , 2002, Discret. Math..

[21]  Laxman Saha,et al.  Fault-tolerant metric dimension of circulant graphs Cn(1, 2, 3) , 2020, Theor. Comput. Sci..