Asymptotic rate of quantum ergodicity in chaotic euclidean billiards

The quantum unique ergodicity (QUE) conjecture of Rudnick and Sarnak is that every eigenfunction ϕn of the Laplacian on a manifold with uniformly hyperbolic geodesic flow becomes equidistributed in the semiclassical limit (eigenvalue En ∞); that is, “strong scars” are absent. We study numerically the rate of equidistribution for a uniformly hyperbolic, Sinai-type, planar Euclidean billiard with Dirichlet boundary condition (the “drum problem”) at unprecedented high E and statistical accuracy, via the matrix elements 〈ϕn, Âϕm〉 of a piecewise-constant test function A. By collecting 30,000 diagonal elements (up to level n ≈ 7 × 105) we find that their variance decays with eigenvalue as a power 0.48 ± 0.01, close to the semiclassical estimate ½ of Feingold and Peres. This contrasts with the results of existing studies, which have been limited to En a factor 102 smaller. We find strong evidence for QUE in this system. We also compare off-diagonal variance as a function of distance from the diagonal, against Feingold-Peres (or spectral measure) at the highest accuracy (0.7%) thus far in any chaotic system. We outline the efficient scaling method and boundary integral formulae used to calculate eigenfunctions. © 2006 Wiley Periodicals, Inc.

[1]  Y. C. Verdière,et al.  Ergodicité et fonctions propres du laplacien , 1985 .

[2]  Arnd Bäcker,et al.  Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems , 2002 .

[3]  Steve Zelditch,et al.  Quantum Ergodicity and Mixing of Eigenfunctions , 2006 .

[4]  李幼升,et al.  Ph , 1989 .

[5]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .

[6]  M. Berry,et al.  Quantum scars of classical closed orbits in phase space , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[8]  Fishman,et al.  Semiclassical criterion for scars in wave functions of chaotic systems. , 1994, Physical review letters.

[9]  André Martinez,et al.  An Introduction to Semiclassical and Microlocal Analysis , 2002 .

[10]  S. Zelditch Note on quantum unique ergodicity , 2003 .

[11]  Alex H. Barnett,et al.  Quasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions , 2006, math-ph/0601006.

[12]  Chaos and Energy Spreading for Time-Dependent Hamiltonians, and the Various Regimes in the Theory of Quantum Dissipation , 1999, cond-mat/9902168.

[13]  J. Marklof Arithmetic Quantum Chaos , 2006 .

[14]  E. Bogomolny,et al.  Chaotic billiards generated by arithmetic groups. , 1992, Physical review letters.

[15]  T. Prosen,et al.  Quantization of generic chaotic 3D billiard with smooth boundary II: structure of high-lying eigenstates , 1996, chao-dyn/9611016.

[16]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[17]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[18]  Marko Robnik,et al.  Study of Regular and Irregular States in Generic Systems , 1999, nlin/0003061.

[19]  D. Robert,et al.  Distribution of matrix elements and level spacings for classically chaotic systems , 1994 .

[20]  E. Lindenstrauss Invariant measures and arithmetic quantum unique ergodicity , 2006 .

[21]  S. Zelditch On the rate of Quantum Ergodicity, II: Lower bounds , 1994 .

[22]  M. Srednicki,et al.  Random matrix elements and eigenfunctions in chaotic systems , 1997, chao-dyn/9711020.

[23]  E. Heller,et al.  Rate of energy absorption for a driven chaotic cavity , 2000, nlin/0006041.

[24]  S. Zelditch Quantum ergodicity on the sphere , 1992 .

[25]  Peter Sarnak,et al.  Spectra and eigenfunctions of laplacians , 1997 .

[26]  S. Zelditch,et al.  Ergodicity of eigenfunctions for ergodic billiards , 1996 .

[27]  P. Sarnak,et al.  Quantum variance for Hecke eigenforms , 2004 .

[28]  M. Wilkinson A semiclassical sum rule for matrix elements of classically chaotic systems , 1987 .

[29]  E. Heller,et al.  Parametric evolution for a deformed cavity. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[31]  P. Sarnak Spectra of hyperbolic surfaces , 2003 .

[32]  Z. Rudnick Quantum Chaos? , 2007 .

[33]  Pérès,et al.  Distribution of matrix elements of chaotic systems. , 1986, Physical review. A, General physics.

[34]  Vergini,et al.  Calculation by scaling of highly excited states of billiards. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  T. Prosen Statistical Properties of Matrix Elements in a Hamilton System Between Integrability and Chaos , 1994 .

[36]  H. Donnelly,et al.  Quantum unique ergodicity , 2002 .

[37]  Gregor Tanner,et al.  How chaotic is the stadium billiard? A semiclassical analysis , 1996, chao-dyn/9610013.

[38]  Distributions of transition matrix elements in classically mixed quantum systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Bambi Hu,et al.  Statistical analysis of scars in stadium billiard , 1997, cond-mat/9712082.

[40]  Fishman,et al.  Approach to ergodicity in quantum wave functions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Scars on quantum networks ignore the Lyapunov exponent. , 2003, Physical review letters.

[42]  E. Heller,et al.  Measuring scars of periodic orbits. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  S. Zelditch Quantum transition amplitudes for ergodic and for completely integrable systems , 1990 .

[44]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[45]  Peter Sarnak,et al.  The behaviour of eigenstates of arithmetic hyperbolic manifolds , 1994 .

[46]  Giulio Casati,et al.  The quantum mechanics of chaotic billiards , 1999 .

[47]  R. Aurich,et al.  On the rate of quantum ergodicity on hyperbolic surfaces and for billiards , 1997, chao-dyn/9707016.

[48]  Tomaž Prosen,et al.  Quantization of a generic chaotic 3D billiard with smooth boundary. I. Energy level statistics , 1996, chao-dyn/9611015.

[49]  R. Schubertz,et al.  On the Number of Bouncing Ball Modes in Billiards , 1997 .

[50]  T. Tate Some remarks on the off-diagonal asymptotics in quantum ergodicity , 1999 .

[51]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[52]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[53]  S. Zelditch A Random Matrix Model for Quantum Mixing , 1996 .

[54]  D. Robert,et al.  Semiclassical sum rules and generalized coherent states , 1995 .

[55]  Lev Kaplan,et al.  Linear and Nonlinear Theory of Eigenfunction Scars , 1998, chao-dyn/9809011.

[56]  S. Zelditch On the rate of quantum ergodicity I: Upper bounds , 1994 .

[57]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[58]  Stéphane Nonnenmacher,et al.  Communications in Mathematical Physics Scarred Eigenstates for Quantum Cat Maps of Minimal Periods , 2003 .

[59]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[60]  E. Bogomolny Smoothed wave functions of chaotic quantum systems , 1988 .

[61]  E. Austin,et al.  Distribution of matrix elements of a classically chaotic system , 1992 .

[62]  R. Schubertz,et al.  On the Rate of Quantum Ergodicity in Euclidean Billiards , 1998 .