Augmentation of myocardial If dysregulates calcium homeostasis and causes adverse cardiac remodeling

[1]  Takehito Tokuyama,et al.  HCN4 Gene Polymorphisms Are Associated With Occurrence of Tachycardia-Induced Cardiomyopathy in Patients With Atrial Fibrillation , 2018, Circulation. Genomic and precision medicine.

[2]  M. Levin,et al.  HCN2 Rescues brain defects by enforcing endogenous voltage pre-patterns , 2018, Nature Communications.

[3]  P. Kantor,et al.  Ivabradine in Children With Dilated Cardiomyopathy and Symptomatic Chronic Heart Failure. , 2017, Journal of the American College of Cardiology.

[4]  M. Levin,et al.  Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis , 2017, Communicative & integrative biology.

[5]  W. Rottbauer,et al.  Erratum: Myoscape controls cardiac calcium cycling and contractility via regulation of L-type calcium channel surface expression , 2016, Nature Communications.

[6]  K. Nakao,et al.  Ectopic automaticity induced in ventricular myocytes by transgenic overexpression of HCN2. , 2015, Journal of molecular and cellular cardiology.

[7]  J. Papp,et al.  Selective Na+/Ca2+ exchanger inhibition prevents Ca2+ overload‐induced triggered arrhythmias , 2014, British journal of pharmacology.

[8]  J. Tardif,et al.  Ivabradine in stable coronary artery disease without clinical heart failure. , 2014, The New England journal of medicine.

[9]  A. Draguhn,et al.  The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. , 2014, Journal of the American College of Cardiology.

[10]  R. Redon,et al.  HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. , 2014, Journal of the American College of Cardiology.

[11]  B. Lewartowski,et al.  Ivabradine Protects Against Ventricular Arrhythmias in Acute Myocardial Infarction in the Rat , 2014, Journal of cellular physiology.

[12]  J. Papp,et al.  ORM‐10103, a novel specific inhibitor of the Na+/Ca2+ exchanger, decreases early and delayed afterdepolarizations in the canine heart , 2013, British journal of pharmacology.

[13]  A. Draguhn,et al.  Altered HCN4 channel C-linker interaction is associated with familial tachycardia-bradycardia syndrome and atrial fibrillation. , 2013, European heart journal.

[14]  K. Chien,et al.  A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells , 2013, Nature Cell Biology.

[15]  G. Wang,et al.  HCN4 Dynamically Marks the First Heart Field and Conduction System Precursors , 2013, Circulation research.

[16]  E. Letavernier,et al.  The role of calpains in myocardial remodelling and heart failure. , 2012, Cardiovascular research.

[17]  J. McArdle,et al.  A new mouse model for the slow-channel congenital myasthenic syndrome induced by the AChR εL221F mutation , 2012, Neurobiology of Disease.

[18]  A. Draguhn,et al.  cAMP Sensitivity of HCN Pacemaker Channels Determines Basal Heart Rate But Is Not Critical for Autonomic Rate Control , 2010, Circulation. Arrhythmia and electrophysiology.

[19]  Michael Böhm,et al.  Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial , 2010, The Lancet.

[20]  Alan Garfinkel,et al.  So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. , 2010, Biophysical journal.

[21]  P. Bruneval,et al.  Chronic heart rate reduction with ivabradine improves systolic function of the reperfused heart through a dual mechanism involving a direct mechanical effect and a long-term increase in FKBP12/12.6 expression. , 2010, European heart journal.

[22]  H. Ehmke,et al.  Control of heart rate by cAMP sensitivity of HCN channels , 2009, Proceedings of the National Academy of Sciences.

[23]  H. Katus,et al.  Transcription profiling of HCN-channel isotypes throughout mouse cardiac development , 2009, Basic Research in Cardiology.

[24]  H. Strauss,et al.  Expression and distribution of voltage-gated ion channels in ferret sinoatrial node. , 2009, Physiological genomics.

[25]  G. Heusch,et al.  Improvement of regional myocardial blood flow and function and reduction of infarct size with ivabradine: protection beyond heart rate reduction. , 2008, European heart journal.

[26]  S. Nattel,et al.  Molecular basis of funny current (If) in normal and failing human heart. , 2008, Journal of molecular and cellular cardiology.

[27]  T. Hewett,et al.  Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. , 2007, The Journal of clinical investigation.

[28]  H. Katus,et al.  Cardiac-specific activation of Cre expression at late fetal development. , 2007, Biochemical and biophysical research communications.

[29]  J. Zavadil,et al.  Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. , 2007, Physiological genomics.

[30]  D. Allen,et al.  Intracellular calcium handling in ventricular myocytes from mdx mice. , 2007, American journal of physiology. Heart and circulatory physiology.

[31]  Tobias Opthof,et al.  Embryological development of pacemaker hierarchy and membrane currents related to the function of the adult sinus node: implications for autonomic modulation of biopacemakers , 2007, Medical & Biological Engineering & Computing.

[32]  D. Roden,et al.  Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. , 2006, The Journal of clinical investigation.

[33]  K. Mani,et al.  Death begets failure in the heart. , 2005, The Journal of clinical investigation.

[34]  Jeffrey L. Anderson,et al.  Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. , 2005, JAMA.

[35]  K. P. Roos,et al.  Functional Adult Myocardium in the Absence of Na+-Ca2+ Exchange: Cardiac-Specific Knockout of NCX1 , 2004, Circulation research.

[36]  T. Thum,et al.  Hallmarks of ion channel gene expression in end‐stage heart failure , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[37]  Antonis A Armoundas,et al.  Role of Sodium-Calcium Exchanger in Modulating the Action Potential of Ventricular Myocytes From Normal and Failing Hearts , 2003, Circulation research.

[38]  G. Breithardt,et al.  Pacemaker channel dysfunction in a patient with sinus node disease. , 2003, The Journal of clinical investigation.

[39]  J. Ross,et al.  Calcium and heart failure: the cycle game , 2003, Nature Medicine.

[40]  S. Houser,et al.  [Na+]i handling in the failing human heart. , 2003, Cardiovascular research.

[41]  U. Ravens,et al.  The hyperpolarization-activated current If in ventricular myocytes of non-transgenic and β2-adrenoceptor overexpressing mice , 2001, Naunyn-Schmiedeberg's Archives of Pharmacology.

[42]  T. Opthof,et al.  If Current and Spontaneous Activity in Mouse Embryonic Ventricular Myocytes , 2001, Circulation research.

[43]  G. Váradi,et al.  A Ca2+-Dependent Transgenic Model of Cardiac Hypertrophy: A Role for Protein Kinase C&agr; , 2001 .

[44]  Akinori Noma,et al.  Molecular Characterization of the Hyperpolarization-activated Cation Channel in Rabbit Heart Sinoatrial Node* , 1999, The Journal of Biological Chemistry.

[45]  G. Mitchell,et al.  Measurement of heart rate and Q-T interval in the conscious mouse. , 1998, American journal of physiology. Heart and circulatory physiology.

[46]  C A Beltrami,et al.  Apoptosis in the failing human heart. , 1997, The New England journal of medicine.

[47]  G Sani,et al.  Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. , 1997, Circulation.

[48]  A. Picard,et al.  Structure and regulation of the mouse cardiac troponin I gene. , 1994, The Journal of biological chemistry.

[49]  S. Schiaffino,et al.  Regional differences in troponin I isoform switching during rat heart development. , 1993, Developmental biology.

[50]  Dario DiFrancesco,et al.  Direct activation of cardiac pacemaker channels by intracellular cyclic AMP , 1991, Nature.

[51]  M. Boyett,et al.  Factors affecting intracellular sodium during repetitive activity in isolated sheep Purkinje fibres. , 1987, The Journal of physiology.

[52]  H. Glitsch,et al.  The contribution of Na and K ions to the pacemaker current in sheep cardiac Purkinje fibres , 1986, Pflügers Archiv.

[53]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[54]  D DiFrancesco,et al.  A study of the ionic nature of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[55]  David M. Harris,et al.  Persistent increases in Ca2+ influx through Cav1.2 shortens action potential and causes Ca2+ overload-induced afterdepolarizations and arrhythmias , 2015, Basic Research in Cardiology.

[56]  Dario DiFrancesco,et al.  Cycling in the Mechanism of Pacemaking Cardiac Pacemaking : Historical Overview and Future Directions , 2010 .

[57]  Mohit M. Jain,et al.  Isolation, culture, and functional analysis of adult mouse cardiomyocytes. , 2007, Methods in molecular medicine.

[58]  K. Kugiyama,et al.  Role of Protein Kinase C , 2005 .