Equilibrium orientations and positions of non-spherical particles in optical traps.

Dynamic simulation is a powerful tool to observe the behavior of arbitrary shaped particles trapped in a focused laser beam. Here we develop a method to find equilibrium positions and orientations using dynamic simulation. This general method is applied to micro- and nano-cylinders as a demonstration of its predictive power. Orientation landscapes for particles trapped with beams of differing polarisation are presented. The torque efficiency of micro-cylinders at equilibrium in a plane is also calculated as a function of tilt angle. This systematic investigation elucidates in both the function and properties of micro- and nano-cylinders trapped in optical tweezers.

[1]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[2]  Jean-Pierre Galaup,et al.  High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light. , 2009, Applied optics.

[3]  R. Gauthier Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile , 1997 .

[4]  H. Rubinsztein-Dunlop,et al.  Calculation of the T-matrix: general considerations and application of the point-matching method , 2003 .

[5]  Jinhua Zhou,et al.  Rotation of birefringent particles in optical tweezers with spherical aberration. , 2009, Applied optics.

[6]  Robert C. Gauthier,et al.  Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects , 1997 .

[7]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[8]  O. Bauchau,et al.  The Vectorial Parameterization of Rotation , 2003 .

[9]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[10]  Halina Rubinsztein-Dunlop,et al.  T-matrix calculation via discrete-dipole approximation, point matching and exploiting symmetry , 2008, 0812.2040.

[11]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[12]  Simon Hanna,et al.  Holographic optical trapping of microrods and nanowires. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  P. A. Maia Neto,et al.  Theory of trapping forces in optical tweezers , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  H. Rubinsztein-Dunlop,et al.  Numerical modelling of optical trapping , 2001 .

[15]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[16]  H. K. Moffatt Six Lectures on General Fluid Dynamics and Two on Hydromagnetic Dynamo Theory , 1977 .

[17]  Mark S. Gordon,et al.  Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .

[18]  J. García de la Torre,et al.  Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications , 1981, Quarterly Reviews of Biophysics.

[19]  Kerstin Ramser,et al.  Optical manipulation for single‐cell studies , 2010, Journal of biophotonics.

[20]  Norman R. Heckenberg,et al.  Calculation of optical trapping landscapes , 2006, SPIE Optics + Photonics.

[21]  Gail McConnell,et al.  Optical trapping and manipulation of live T cells with a low numerical aperture lens. , 2008, Optics express.

[22]  Thomas Powers,et al.  Life at low Reynolds' number revisited , 2012 .

[23]  H. Rubinsztein-Dunlop,et al.  Symmetry and the generation and measurement of optical torque , 2008, 0812.2039.

[24]  Stefano Pagliara,et al.  Rotational dynamics of optically trapped nanofibers. , 2009, Optics express.

[25]  Halina Rubinsztein-Dunlop,et al.  The effect of Mie resonances on trapping in optical tweezers. , 2008, Optics express.

[26]  Hiroo Ukita,et al.  Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position. , 2010, Applied optics.

[27]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[28]  Simon Hanna,et al.  Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. , 2011, Optics express.

[29]  Juan José Sáenz,et al.  Scattering forces from the curl of the spin angular momentum of a light field. , 2009, Physical review letters.

[30]  Adriana Fontes,et al.  Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric. , 2006, Optics express.

[31]  P. Chaumet,et al.  Coupled dipole method to compute optical torque: Application to a micropropeller , 2007 .

[32]  Norman R. Heckenberg,et al.  T-matrix method for modelling optical tweezers , 2011 .

[33]  Shida Tan,et al.  Optical Trapping of Single-Walled Carbon Nanotubes , 2004 .

[34]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[35]  F. Yao,et al.  Controlled trapping and rotation of carbon nanotube bundle with optical tweezers , 2006 .

[36]  R. Gauthier,et al.  Theoretical investigation of the optical trapping properties of a micro-optic cubic glass structure. , 2000, Applied optics.

[37]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .