Microstructure and hydrides in the near rolled-joint regions of ex-service CANDU pressure tube

[1]  A. Buyers,et al.  Fracture of Gamma and Delta Hydrides during Delayed Hydride Cracking , 2021, Zirconium in the Nuclear Industry: 19th International Symposium.

[2]  M. Daymond,et al.  Characterizing the crystal structure and formation induced plasticity of γ-hydride phase in zirconium , 2019 .

[3]  M. Daymond,et al.  A solution to FIB induced artefact hydrides in Zr alloys , 2019, Journal of Nuclear Materials.

[4]  T. B. Britton,et al.  Microstructure and formation mechanisms of δ-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction , 2018, Acta Materialia.

[5]  C. Coleman,et al.  Effect of Irradiation on Terminal Solid Solubility of Hydrogen in Zr-2.5Nb , 2018 .

[6]  C. Coleman,et al.  Precipitates in metals that dissolve on cooling and form on heating: An example with hydrogen in alpha-zirconium , 2017 .

[7]  M. Daymond,et al.  Advanced Characterization of Hydrides in Zirconium Alloys , 2017 .

[8]  DouglasRodgers,et al.  PERFORMANCE OF PRESSURE TUBES IN CANDU REACTORS , 2016 .

[9]  S. Haigh,et al.  Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive X-ray spectroscopy (EDX) using an aberration-corrected (scanning) transmission electron microscope , 2014 .

[10]  G. A. McRae,et al.  The first step for delayed hydride cracking in zirconium alloys , 2010 .

[11]  M. Preuss,et al.  Evidence of stress-induced hydrogen ordering in zirconium hydrides , 2009 .

[12]  M. Griffiths,et al.  The transformation behaviour of the β-phase in Zr–2.5Nb pressure tubes , 2008 .

[13]  P. Scardi,et al.  Line broadening analysis using integral breadth methods: a critical review , 2004 .

[14]  O. Woo,et al.  Kinetics of the δ to γ zirconium hydride transformation in Zr-2.5Nb , 2003 .

[15]  L. W. Green,et al.  The determination of hydrogen and deuterium in Zr–2.5Nb material by hot vacuum extraction mass spectrometry , 2002 .

[16]  Yong Hwan Jeong,et al.  Correlation between microstructure and corrosion behavior of Zr-Nb binary alloy , 2002 .

[17]  C. Tomé,et al.  Determination of dislocation densities in HCP metals from X-ray diffraction line-broadening analysis , 2002 .

[18]  Y. Ma,et al.  The effect of annealing on hardness, microstructure and delayed hydride cracking in Zr–2.5Nb pressure tube material , 2001 .

[19]  M. Jenkins,et al.  Characterisation of Radiation Damage by Transmission Electron Microscopy , 2000 .

[20]  A. McMinn,et al.  The Terminal Solid Solubility of Hydrogen in Zirconium Alloys , 2000 .

[21]  J. Root,et al.  Observation of kinetics of γ zirconium hydride formation in Zr–2.5Nb by neutron diffraction , 1998 .

[22]  J. Mecke,et al.  Evolution of Microstructure in Zirconium Alloys During Irradiation , 1996 .

[23]  J. Root,et al.  Neutron diffraction study of the precipitation and dissolution of hydrides in Zr-2.5Nb Pressure tube material , 1996 .

[24]  R. J. Schultz,et al.  α-Zr self-diffusion anisotropy , 1995 .

[25]  A. Kolesnikov,et al.  Neutron scattering studies of ordered gamma -ZrD , 1994 .

[26]  M. Griffiths,et al.  Evolution of Microstructure in Zirconium Alloy Core Components of Nuclear Reactors during Service , 1994 .

[27]  S. Dumbill,et al.  Comment on Fe-distribution in Zr-2.5Nb pressure tubing , 1993 .

[28]  G. Purdy,et al.  A study of the distribution of Nb and Fe in two-phase Zr-2.5 wt% Nb alloys , 1993 .

[29]  A. Tybulewicz,et al.  Reversible γ→α+δ transformation in zirconium deuteride , 1992 .

[30]  J. Mecke,et al.  Determination of Dislocation Densities in Hexagonal Close-Packed Metals using X-Ray Diffraction and Transmission Electron Microscopy , 1991 .

[31]  J. Abriata,et al.  The H-Zr (hydrogen-zirconium) system , 1990 .

[32]  G. D. Moan,et al.  Leak-before-break in the pressure tubes of CANDU reactors , 1990 .

[33]  V. Urbanic,et al.  Effect of microstructure on the corrosion of Zr-2.5Nb alloy , 1990 .

[34]  C. K. Chow,et al.  Oxidation and Deuterium Uptake of Zr-2.5Nb Pressure Tubes in CANDU-PHW Reactors , 1989 .

[35]  M. Griffiths A review of microstructure evolution in zirconium alloys during irradiation , 1988 .

[36]  G. M. Hood Point defect diffusion in α-Zr , 1988 .

[37]  R. W. Gilbert,et al.  Component dislocations in annealed Zircaloy irradiated at about 570 K , 1986 .

[38]  M. Puls,et al.  The effect of metallurgical factors on hydride phases in zirconium , 1984 .

[39]  G. Weatherly,et al.  HYDRIDE PRECIPITATION IN α/β ZIRCONIUM ALLOYS , 1983 .

[40]  C. E. Coleman,et al.  CANDU-PHW Pressure Tubes: Their Manufacture, Inspection, and Properties , 1982 .

[41]  R. G. Duncan,et al.  On the existence of a memoty effect in hydride precipitation in cold-worked Zr-2.5% Nb , 1977 .

[42]  A. Johnson,et al.  Effect of Aging and Irradiation on the Corrosion of Zr-2.5 Wt% Nb , 1975 .

[43]  G. Lorimer,et al.  The relationship between gamma and delta hydrides in zirconium-hydrogen alloys of low hydrogen concentration , 1974 .

[44]  G. Carpenter The dilatational misfit of zirconium hydrides precipitated in zirconium , 1973 .

[45]  K. Amouzouvi,et al.  Effect Of Shot Peening And Post-peeningheat Treatments On The Microstructure, Theresidual Stresses And Hardness, Corrosionand Deuterium Uptake Resistance OfZr-2.5Nb Pressure Tube Material , 1970 .

[46]  J. J. Kearns TERMINAL SOLUBILITY AND PARTITIONING OF HYDROGEN IN THE ALPHA PHASE OF ZIRCONIUM, ZIRCALOY-2, AND ZIRCALOY-4. , 1967 .

[47]  J. E. Bailey Electron microscope observations on the precipitation of zirconium hydride in zirconium , 1963 .

[48]  S. S. Sidhu,et al.  NEUTRON AND X-RAY DIFFRACTION STUDIES OF NONSTOICHIOMETRIC METAL HYDRIDES , 1963 .