Optimization Design and Elastic Analysis on Shell Type Foundation for Wind Turbo-Generator

On account of the Wind Turbine Foundation Design Rules of China (trial implementation), the grid method is used to form an optimization design for the shell type foundation of the wind turbo-generator, using concrete dosage as the objective function. The constraint condition of the optimization meets the bearing capacity of the foundation and the compressive stress at the edge of foundation is greater than or equal to zero, reaching optimal relation between the central non-contact area and the contact area. Meanwhile, the finite element analysis on the shell type foundation of a wind turbo-generator is numerically performed in this paper by using ANSYS, to verify the feasibility of optimization scheme. The results show that this optimization scheme which can reduce the cost of wind power engineering project satisfies the requirement of design rules, saving the consumption of the concrete, and it has obvious economic benefits.