High thermal stability multilayered electrolyte complexes via layer-by-layer for long-life lithium-sulfur battery

[1]  Xiaoyan Ma,et al.  Preparation and characterization of polypropylene supported electrospun POSS-(C3H6Cl)8/PVDF gel polymer electrolytes for lithium-ion batteries , 2019, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[2]  Wei-min Kang,et al.  PVDF/TBAPF6 hierarchical nanofiber gel membrane for lithium ion capacitor with ultrahigh ion conductivity and excellent interfacial compatibility , 2019, Electrochimica Acta.

[3]  B. Cheng,et al.  A Review: Electrospun Nanofiber Materials for Lithium‐Sulfur Batteries , 2019, Advanced Functional Materials.

[4]  Junsheng Li,et al.  Suppressed polysulfide shuttling and improved Li+ transport in Li S batteries enabled by NbN modified PP separator , 2019, Journal of Power Sources.

[5]  Jingyu Xi,et al.  Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries , 2019, Electrochimica Acta.

[6]  Xiaogang Zhang,et al.  Nano‐sized Titanium Nitride Functionalized Separator Improves Cycling Performance of Lithium Sulfur Batteries , 2019, ChemistrySelect.

[7]  Jae-won Lee,et al.  A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries , 2018, Journal of Korean Powder Metallurgy Institute.

[8]  Zidong Wei,et al.  Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries , 2018, Journal of Energy Chemistry.

[9]  Junsheng Li,et al.  Interfacing soluble polysulfides with a SnO2 functionalized separator: An efficient approach for improving performance of Li-S battery , 2018, Journal of Membrane Science.

[10]  X. Qin,et al.  Fe3O4-Decorated Porous Graphene Interlayer for High-Performance Lithium-Sulfur Batteries. , 2018, ACS applied materials & interfaces.

[11]  Xiaonong Chen,et al.  Nano-TiO 2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery , 2018 .

[12]  Haodong Shi,et al.  All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries. , 2018, ACS nano.

[13]  Feng Wu,et al.  Enhanced performance of lithium-sulfur batteries with high sulfur loading utilizing ion selective MWCNT/SPANI modified separator , 2018 .

[14]  Zhixing Wang,et al.  Lightweight Reduced Graphene Oxide@MoS2 Interlayer as Polysulfide Barrier for High-Performance Lithium-Sulfur Batteries. , 2018, ACS applied materials & interfaces.

[15]  Lynden A Archer,et al.  Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries. , 2017, Small.

[16]  H. Du,et al.  Improved performance of lithium-sulfur battery by a functional separator design , 2018, Journal of Solid State Electrochemistry.

[17]  Xiaoyan Ma,et al.  Electrospun octa(3-chloropropyl)-polyhedral oligomeric silsesquioxane-modified polyvinylidene fluoride/poly(acrylonitrile)/poly(methylmethacrylate) gel polymer electrolyte for high-performance lithium ion battery , 2018, Journal of Solid State Electrochemistry.

[18]  T. Zheng,et al.  Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries. , 2017, ChemSusChem.

[19]  B. Liu,et al.  Flexible Carbon Nanotube Modified Separator for High-Performance Lithium-Sulfur Batteries , 2017, Nanomaterials.

[20]  Jun Lu,et al.  Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries , 2017 .

[21]  Ke Li,et al.  Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress. , 2016, ChemSusChem.

[22]  C. Tsui,et al.  A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes , 2016 .

[23]  Lin Ma,et al.  Nanomaterials: Science and applications in the lithium–sulfur battery , 2015 .

[24]  K. Lian,et al.  Polyoxometalate modified inorganic–organic nanocomposite materials for energy storage applications: A review , 2015 .

[25]  Zhichuan J. Xu,et al.  Encapsulating MWNTs into Hollow Porous Carbon Nanotubes: A Tube‐in‐Tube Carbon Nanostructure for High‐Performance Lithium‐Sulfur Batteries , 2014, Advanced materials.

[26]  Dongju Chen Solvent‐resistant nanofiltration membranes based on multilayered polyelectrolytes deposited on silicon composite , 2013 .

[27]  K. Lian,et al.  Multilayer Polyoxometalates-Carbon Nanotube Composites for Electrochemical Capacitors , 2013 .

[28]  Yan Xiang,et al.  Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. , 2012, Chemical Society reviews.

[29]  Ping Zhang,et al.  The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries , 2009 .

[30]  Guanggang Gao,et al.  Multicolor electrochromic and pH-sensitive nanocomposite thin film based on polyoxometalates and polyviologen , 2009 .

[31]  Tetsuo Sakai,et al.  Electrochemical Performances of Polyacrylonitrile Nanofiber-Based Nonwoven Separator for Lithium-Ion Battery , 2007 .

[32]  E. Wang,et al.  Fabrication and characterization of multilayer films based on Keggin-type polyoxometalate and chitosan , 2006 .

[33]  Michael F. Rubner,et al.  pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes , 2000 .

[34]  T. Kunitake,et al.  Formation Process of Ultrathin Multilayer Films of Molybdenum Oxide by Alternate Adsorption of Octamolybdate and Linear Polycations , 1998 .