Solving minimum-cost flow problems by successive approximation

We introduce a framework for solving minimum-cost flow problems. Our approach measures the quality of a solution by the amount that the complementary slackness conditions are violated. We show how to extend techniques developed for the maximum flow problem to improve the quality of a solution. This framework allows us to achieve &Ogr;(min(n3, n5/3 m2/3, nm log n) log (nC)) running time.

[1]  D. Bartholomew,et al.  Linear Programming: Methods and Applications , 1970 .

[2]  G. Minty Monotone networks , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  D. R. Fulkerson,et al.  An Out-of-Kilter Method for Minimal-Cost Flow Problems , 1960 .

[4]  Steven Vajda,et al.  Linear Programming. Methods and Applications , 1964 .

[5]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[6]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[7]  A. V. Karzanov,et al.  Determining the maximal flow in a network by the method of preflows , 1974 .

[8]  S. N. Maheshwari,et al.  An O(|V|³) Algorithm for Finding Maximum Flows in Networks , 1978, Inf. Process. Lett..

[9]  Steven Fortune,et al.  Parallelism in random access machines , 1978, STOC.

[10]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[11]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[12]  Uzi Vishkin,et al.  An O(n² log n) Parallel MAX-FLOW Algorithm , 1982, J. Algorithms.

[13]  Uzi Vishkin,et al.  An O(log n) Parallel Connectivity Algorithm , 1982, J. Algorithms.

[14]  Pierre A. Humblet,et al.  A Distributed Algorithm for Minimum-Weight Spanning Trees , 1983, TOPL.

[15]  Harold N. Gabow,et al.  Scaling algorithms for network problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[16]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[17]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[18]  R. Tarjan A simple version of Karzanov's blocking flow algorithm , 1984 .

[19]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[20]  Baruch Awerbuch,et al.  Complexity of network synchronization , 1985, JACM.

[21]  J. Orlin Working Paper Alfred P. Sloan School of Management Genuinely Polynominal Simplex and Non-simplex Algorithms for the Minimum Cost Flow Problem Genuinely Polynominal Simplex and Non-simplex Algorithms for the Minimum Cost Flow Problem , 2008 .

[22]  Robert E. Tarjan,et al.  Self-adjusting binary search trees , 1985, JACM.

[23]  Ogielski Integer optimization and zero-temperature fixed point in Ising random-field systems. , 1986, Physical review letters.

[24]  Satoru Fujishige,et al.  A capacity-rounding algorithm for the minimum-cost circulation problem: A dual framework of the Tardos algorithm , 1986, Math. Program..

[25]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[26]  Bruce M. Maggs,et al.  Communication-Efficient Parallel Graph Algorithms , 1986, ICPP.

[27]  Andrew Vladislav Goldberg,et al.  Efficient graph algorithms for sequential and parallel computers , 1987 .

[28]  Dimitri P. Bertsekas,et al.  Distributed Asynchronous Relaxation Methods for Linear Network Flow Problems , 1987 .

[29]  Paul Tseng,et al.  Relaxation Methods for Minimum Cost Ordinary and Generalized Network Flow Problems , 1988, Oper. Res..