Guaranteed lower bounds for eigenvalues
暂无分享,去创建一个
[1] Carsten Carstensen,et al. Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.
[2] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[3] Wolfgang Dahmen,et al. Adaptive eigenvalue computation: complexity estimates , 2007, Numerische Mathematik.
[4] R. Durán,et al. ASYMPTOTIC LOWER BOUNDS FOR EIGENVALUES BY NONCONFORMING FINITE ELEMENT METHODS , 2004 .
[5] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .
[6] R. Durán,et al. A posteriori error estimators for nonconforming finite element methods , 1996 .
[7] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[8] Carsten Carstensen,et al. An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity , 2012, SIAM J. Numer. Anal..
[9] Carsten Carstensen,et al. Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..
[10] Haijun Wu,et al. Enhancing eigenvalue approximation by gradient recovery on adaptive meshes , 2009 .
[11] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[12] Susanne C. Brenner,et al. Convergence of nonconforming multigrid methods without full elliptic regularity , 1999, Math. Comput..
[13] George E. Forsythe,et al. Asymptotic lower bounds for the fundamental frequency of convex membranes , 1955 .
[14] Lloyd N. Trefethen,et al. Computed eigenmodes of planar regions , 2005 .
[15] R. Laugesen,et al. Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality , 2009, 0907.1552.
[16] A. Knyazev,et al. A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .
[17] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[18] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[19] Carsten Carstensen,et al. An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.
[20] Stefano Giani,et al. A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..
[21] Carsten Carstensen,et al. Explicit Error Estimates for Courant, Crouzeix-Raviart and Raviart-Thomas Finite Element Methods , 2012 .
[22] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[23] Eduardo M. Garau,et al. Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.
[24] R. Hoppe,et al. A review of unified a posteriori finite element error control , 2012 .
[25] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[26] Jun Hu,et al. The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.
[27] Ricardo G. Durán,et al. A posteriori error estimates for non-conforming approximation of eigenvalue problems , 2012 .
[28] Hans F. Weinberger,et al. Upper and lower bounds for eigenvalues by finite difference methods , 1956 .