The Monte Carlo feature selection and interdependency discovery is unbiased
暂无分享,去创建一个
Agnieszka Nowak-Brzezińska | Michał Dramiński | Jan Komorowski | Marcin Kierczak | J. Koronecki | J. Komorowski | A. Nowak-Brzezińska | M. Kierczak | Michał Dramiński | J. Koronecki
[1] Yi Li,et al. Bayesian automatic relevance determination algorithms for classifying gene expression data. , 2002, Bioinformatics.
[2] Achim Zeileis,et al. Bias in random forest variable importance measures: Illustrations, sources and a solution , 2007, BMC Bioinformatics.
[3] K. Hornik,et al. Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .
[4] Jan Komorowski,et al. BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm486 Data and text mining Monte Carlo , 2022 .
[5] Ramón Díaz-Uriarte,et al. Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.
[6] Marcin Kierczak. From Physicochemical Features to Interdependency Networks : A Monte Carlo Approach to Modeling HIV-1 Resistome and Post-translational Modifications , 2009 .
[7] Pedro Larrañaga,et al. A review of feature selection techniques in bioinformatics , 2007, Bioinform..
[8] Sandrine Dudoit,et al. Classification in microarray experiments , 2003 .
[9] Sabine Van Huffel,et al. Bagging Linear Sparse Bayesian Learning Models for Variable Selection in Cancer Diagnosis , 2007, IEEE Transactions on Information Technology in Biomedicine.
[10] Achim Zeileis,et al. BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .
[11] Sohail Asghar,et al. A REVIEW OF FEATURE SELECTION TECHNIQUES IN STRUCTURE LEARNING , 2013 .
[12] Xiaohui Liu,et al. Combining multiple classifiers for wrapper feature selection , 2008, Int. J. Data Min. Model. Manag..
[13] Jan Komorowski,et al. A Rough Set-Based Model of HIV-1 Reverse Transcriptase Resistome , 2009, Bioinformatics and biology insights.
[14] R. Tibshirani,et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[15] Jan Komorowski,et al. Monte Carlo Feature Selection and Interdependency Discovery in Supervised Classification , 2010, Advances in Machine Learning II.
[16] Trevor Hastie,et al. Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays , 2003 .
[17] Kellie J. Archer,et al. Empirical characterization of random forest variable importance measures , 2008, Comput. Stat. Data Anal..
[18] Michał Dramiński,et al. Computational Analysis of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected Reverse Transcriptase Inhibitors , 2010, Bioinformatics and biology insights.