Optofluidic bioanalysis: fundamentals and applications

Abstract: Over the past decade, optofluidics has established itself as a new and dynamic research field for exciting developments at the interface of photonics, microfluidics, and the life sciences. The strong desire for developing miniaturized bioanalytic devices and instruments, in particular, has led to novel and powerful approaches to integrating optical elements and biological fluids on the same chip-scale system. Here, we review the state-of-the-art in optofluidic research with emphasis on applications in bioanalysis and a focus on waveguide-based approaches that represent the most advanced level of integration between optics and fluidics. We discuss recent work in photonically reconfigurable devices and various application areas. We show how optofluidic approaches have been pushing the performance limits in bioanalysis, e.g. in terms of sensitivity and portability, satisfying many of the key requirements for point-of-care devices. This illustrates how the requirements for bianalysis instruments are increasingly being met by the symbiotic integration of novel photonic capabilities in a miniaturized system.

[1]  D. Grier A revolution in optical manipulation , 2003, Nature.

[2]  L K Chin,et al.  Transformation optofluidics for large-angle light bending and tuning. , 2012, Lab on a chip.

[3]  Aaron R. Hawkins,et al.  All-optical particle trap using two orthogonally intersecting beams , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[4]  Oskar Painter,et al.  Observation of quantum motion of a nanomechanical resonator. , 2012, Physical review letters.

[5]  Hong Cai,et al.  Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices. , 2010, Optics letters.

[6]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[7]  K. Crozier,et al.  Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles. , 2011, Lab on a chip.

[8]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[9]  M. Lipson,et al.  Optofluidic trapping and transport on solid core waveguides within a microfluidic device. , 2007, Optics express.

[10]  Cornell,et al.  Laser-guided atoms in hollow-core optical fibers. , 1995, Physical review letters.

[11]  G. Whitesides,et al.  Dynamic control of liquid-core/liquid-cladding optical waveguides , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[12]  Hongying Zhu,et al.  Opto-fluidic micro-ring resonator for sensitive label-free viral detection. , 2008, The Analyst.

[13]  Nam-Trung Nguyen,et al.  Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent , 2011 .

[14]  Xudong Fan,et al.  Bio-inspired optofluidic lasers with luciferin , 2013 .

[15]  David Sinton,et al.  Slab waveguide photobioreactors for microalgae based biofuel production. , 2012, Lab on a chip.

[16]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[17]  D. Erickson,et al.  Optofluidic transport in liquid core waveguiding structures , 2007 .

[18]  Takumi Sannomiya,et al.  Embedded plasmonic nanomenhirs as location-specific biosensors. , 2013, Nano letters.

[19]  Brian T. Cunningham,et al.  Point-of-care Detection and Real-time Monitoring of Intravenously Delivered Drugs via Tubing with an Integrated SERS Sensor , 2013 .

[20]  Demetri Psaltis Optofluidics for energy applications , 2013 .

[21]  Li Jiang,et al.  Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics , 2014, Scientific Reports.

[22]  Filbert J. Bartoli,et al.  Differentiating surface and bulk interactions in nanoplasmonic interferometric sensor arrays , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[23]  Kerry J. Vahala,et al.  Fabrication and coupling to planar high-Q silica disk microcavities , 2003 .

[24]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[25]  Hatice Altug,et al.  Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. , 2013, Lab on a chip.

[26]  Xudong Fan,et al.  A microfabricated optofluidic ring resonator for sensitive, high-speed detection of volatile organic compounds. , 2014, Lab on a chip.

[27]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[28]  T. Kaneko,et al.  Second-order filter response from parallel coupled glass microring resonators , 1999, IEEE Photonics Technology Letters.

[29]  Derek Tseng,et al.  Fluorescent imaging of single nanoparticles and viruses on a smart phone. , 2013, ACS nano.

[30]  T. D. Yuzvinsky,et al.  Hybrid optofluidic integration. , 2013, Lab on a chip.

[31]  D. Deamer,et al.  Integrated optical waveguides with liquid cores , 2004 .

[32]  Aydogan Ozcan,et al.  Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses , 2013, Nature Photonics.

[33]  A. Hawkins,et al.  On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides , 2007 .

[34]  Ian M White,et al.  A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection. , 2012, Biomicrofluidics.

[35]  Xudong Fan,et al.  Lasing in blood. , 2016, Optica.

[36]  Qiaoqiang Gan,et al.  Plasmonic interferometers for label-free multiplexed sensing. , 2013, Optics express.

[37]  Hsin-Yu Wu,et al.  Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor. , 2013, Nanoscale.

[38]  Hatice Altug,et al.  Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. , 2012, ACS nano.

[39]  H. Schmidt,et al.  Optimization of Interface Transmission Between Integrated Solid Core and Optofluidic Waveguides , 2012, IEEE Photonics Technology Letters.

[40]  Charles J. Choi,et al.  Microfluidic chip for combinatorial mixing and screening of assays. , 2009, Lab on a Chip.

[41]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[42]  D. Sinton,et al.  Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. , 2012, Nano letters.

[43]  Katsuo Kurabayashi,et al.  Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood , 2014, ACS nano.

[44]  A. Hawkins,et al.  Slow light on a chip via atomic quantum state control , 2010 .

[45]  Shiyun Lin,et al.  An integrated microparticle sorting system based on near-field optical forces and a structural perturbation. , 2012, Optics express.

[46]  P. Sarro,et al.  ARROW optical waveguides based sensors , 2004 .

[47]  Katrin Wondraczek,et al.  Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber. , 2015, ACS nano.

[48]  Pietro Ferraro,et al.  Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. , 2008, Optics express.

[49]  Romuald Houdré,et al.  Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals. , 2013, Lab on a chip.

[50]  Jinjie Shi,et al.  Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. , 2009, Lab on a chip.

[51]  Jinjie Shi,et al.  Tunable optofluidic microlens through active pressure control of an air–liquid interface , 2010 .

[52]  Aaron R. Hawkins,et al.  Correlated Electrical and Optical Analysis of Single Nanoparticles and Biomolecules on a Nanopore-Gated Optofluidic Chip , 2014, Nano letters.

[53]  David Erickson,et al.  Redox mediated photocatalytic water-splitting in optofluidic microreactors. , 2013, Lab on a chip.

[54]  W. Risk,et al.  Optical waveguides with an aqueous core and a low-index nanoporous cladding. , 2004, Optics express.

[55]  David Erickson,et al.  Nanomanipulation using silicon photonic crystal resonators. , 2010, Nano letters.

[56]  Ya-Tzu Chen,et al.  Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices. , 2013, Lab on a chip.

[57]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[58]  Hong Cai,et al.  Optofluidic microparticle splitters using multimode-interference-based power splitters , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[59]  Aaron R. Hawkins,et al.  Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[60]  George M Whitesides,et al.  A low-threshold, high-efficiency microfluidic waveguide laser. , 2005, Journal of the American Chemical Society.

[61]  D. Conkey,et al.  Atomic spectroscopy on a chip , 2007 .

[62]  Petr Chýlekt,et al.  Light scattering by small particles in an absorbing medium , 1977 .

[63]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[64]  Luke P. Lee,et al.  Optofluidics: Fundamentals, Devices, and Applications , 2009 .

[65]  Robert A. Forties,et al.  Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays , 2014, Nature nanotechnology.

[66]  P. Kiesel,et al.  Spatially modulated fluorescence emission from moving particles , 2009 .

[67]  A. Hawkins,et al.  The photonic integration of non-solid media using optofluidics , 2011 .

[68]  Jun Kameoka,et al.  An optofluidic device for surface enhanced Raman spectroscopy. , 2007, Lab on a chip.

[69]  J Fedeli,et al.  Optical manipulation of microparticles and cells on silicon nitride waveguides. , 2005, Optics express.

[70]  Holger Schmidt,et al.  Optical particle sorting on an optofluidic chip. , 2013, Optics express.

[71]  Demetri Psaltis,et al.  Optofluidics of plants , 2016 .

[72]  David Erickson,et al.  Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning. , 2015, Optics express.

[73]  Peter Kiesel,et al.  Time encoded multicolor fluorescence detection in a microfluidic flow cytometer. , 2012, Lab on a chip.

[74]  David Erickson,et al.  Optofluidic ring resonator switch for optical particle transport. , 2010, Lab on a chip.

[75]  A. Hawkins,et al.  Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip. , 2010, Lab on a chip.

[76]  D. Deamer,et al.  Single-molecule detection sensitivity using planar integrated optics on a chip. , 2006, Optics letters.

[77]  Demetri Psaltis,et al.  Pneumatically tunable optofluidic dye laser , 2010 .

[78]  A. Hawkins,et al.  Optofluidic devices with integrated solid-state nanopores , 2016, Microchimica Acta.

[79]  Holger Schmidt,et al.  Flexible optofluidic waveguide platform with multi-dimensional reconfigurability , 2016, Scientific Reports.

[80]  Jing Liu,et al.  Brillouin cavity optomechanics with microfluidic devices , 2013, Nature Communications.

[81]  M. A. Stott,et al.  Optofluidic analysis system for amplification-free, direct detection of Ebola infection , 2015, Scientific Reports.

[82]  David Erickson,et al.  Nanoporous polymer ring resonators for biosensing , 2011, Optics express.

[83]  Aydogan Ozcan,et al.  Integrated rapid-diagnostic-test reader platform on a cellphone. , 2012, Lab on a chip.

[84]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[85]  Zhaoyu Zhang,et al.  Mechanically tunable optofluidic distributed feedback dye laser , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[86]  A. Hawkins,et al.  Optofluidic particle concentration by a long-range dual-beam trap. , 2009, Optics letters.

[87]  Holger Schmidt,et al.  Optofluidic waveguides: I. Concepts and implementations , 2008, Microfluidics and nanofluidics.

[88]  D. Néel,et al.  Optical transport of semiconductor nanowires on silicon nitride waveguides , 2009 .

[89]  Tal Carmon,et al.  Cavity optomechanics on a microfluidic resonator with water and viscous liquids , 2012, Light: Science & Applications.

[90]  C. Bliss,et al.  Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. , 2007, Lab on a chip.

[91]  P. Sarro,et al.  Liquid-core/liquid-cladding integrated silicon ARROW waveguides , 2008 .

[92]  Xiaoshuai Liu,et al.  Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes , 2015 .

[93]  D. Deamer,et al.  Loss-based optical trap for on-chip particle analysis. , 2009, Lab on a chip.

[94]  Ronen Adato,et al.  In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas , 2013, Nature Communications.

[95]  Holger Schmidt,et al.  Spectrally reconfigurable integrated multi-spot particle trap. , 2015, Optics letters.

[96]  Mehmet Fatih Yanik,et al.  Large-scale plasmonic microarrays for label-free high-throughput screening. , 2011, Lab on a chip.

[97]  Fredrik Höök,et al.  Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes , 2015 .

[98]  Seung‐Man Yang,et al.  Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources. , 2008, Lab on a chip.

[99]  K. Crozier,et al.  Trapping-assisted sensing of particles and proteins using on-chip optical microcavities. , 2013, ACS nano.

[100]  Anders Kristensen,et al.  Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser , 2004 .

[101]  A. Hawkins,et al.  Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics. , 2007, Optics express.

[102]  S Kawata,et al.  Optically driven Mie particles in an evanescent field along a channeled waveguide. , 1996, Optics letters.

[103]  Wei W. Yu,et al.  Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. , 2013, The Analyst.

[104]  A. Hawkins,et al.  Hollow-core waveguide characterization by optically induced particle transport. , 2008, Optics letters.

[105]  David Erickson,et al.  Controlled photonic manipulation of proteins and other nanomaterials. , 2012, Nano letters.

[106]  Malte C. Gather,et al.  Single-cell biological lasers , 2011 .

[107]  Aaron R. Hawkins,et al.  Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[108]  S. Balslev,et al.  Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments. , 2005, Optics express.

[109]  A. Hawkins,et al.  Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[110]  Jane Kuypers,et al.  Evaluation of quantitative and type-specific real-time RT-PCR assays for detection of respiratory syncytial virus in respiratory specimens from children , 2004, Journal of Clinical Virology.

[111]  Thijs van Leest,et al.  Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal. , 2013, Lab on a chip.

[112]  F Benabid,et al.  Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling. , 2006, Optics express.

[113]  Ethan Schonbrun,et al.  Optical manipulation with planar silicon microring resonators. , 2010, Nano letters.

[114]  J. Wilkinson,et al.  Sorting of polystyrene microspheres using a Y-branched optical waveguide. , 2005, Optics express.

[115]  Xudong Fan,et al.  Periodic plasmonic enhancing epitopes on a whispering gallery mode biosensor. , 2012, Optics express.

[116]  D. Deamer,et al.  Planar optofluidic chip for single particle detection, manipulation, and analysis. , 2007, Lab on a chip.

[117]  Wonsuk Lee,et al.  Bio-switchable optofluidic lasers based on DNA Holliday junctions. , 2012, Lab on a chip.

[118]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[119]  Aaron R. Hawkins,et al.  Handbook of Optofluidics , 2010 .

[120]  Xudong Fan,et al.  The potential of optofluidic biolasers , 2014, Nature Methods.

[121]  Aydogan Ozcan,et al.  Handheld high-throughput plasmonic biosensor using computational on-chip imaging , 2014, Light: Science & Applications.

[122]  Sindy K. Y. Tang,et al.  Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. , 2008, Lab on a chip.

[123]  A. Hawkins,et al.  Optofluidic waveguides: II. Fabrication and structures , 2007, Microfluidics and nanofluidics.

[124]  Demetri Psaltis,et al.  SPECTROGRAPHIC MICROFLUIDIC MEMORY , 2005 .

[125]  V. Lien,et al.  High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[126]  T. Kamiya,et al.  Resolution of self-images in planar optical waveguides* , 1978 .

[127]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[128]  A. Hawkins,et al.  Electro-optical detection of single λ-DNA. , 2015, Chemical communications.

[129]  Hongying Zhu,et al.  Cost-effective and rapid blood analysis on a cell-phone. , 2013, Lab on a chip.

[130]  Anders Kristensen,et al.  Single-mode biological distributed feedback laser. , 2013, Lab on a chip.

[131]  Hong Cai,et al.  Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator. , 2011, Optics letters.

[132]  A. Hawkins,et al.  Hollow waveguides with low intrinsic photoluminescence fabricated with Ta(2)O(5) and SiO(2) films. , 2011, Applied physics letters.

[133]  Hong Cai,et al.  Optical manipulation and transport of microparticles on a silicon nitride microracetrack resonator add-drop device , 2010, 7th IEEE International Conference on Group IV Photonics.

[134]  B. Jalali,et al.  Add-drop filters utilizing vertically-coupled microdisk resonators in silicon , 2004, The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004..

[135]  Laura M. Lechuga,et al.  Integrated optical devices for lab‐on‐a‐chip biosensing applications , 2012 .

[136]  G. M. Hwang,et al.  High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. , 2010, Nano letters.

[137]  P. Sarro,et al.  A hybrid silicon-PDMS optofluidic platform for sensing applications. , 2014, Biomedical optics express.

[138]  Romeo Bernini,et al.  Integrated silicon optofluidic ring resonator , 2010 .

[139]  Demetri Psaltis,et al.  Electrically tunable optofluidic light switch for reconfigurable solar lighting. , 2013, Lab on a chip.

[140]  V. Lien,et al.  A prealigned process of integrating optical waveguides with microfluidic devices , 2004, IEEE Photonics Technology Letters.

[141]  R. Mathies,et al.  Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications. , 2014, Biomicrofluidics.

[142]  A Mitchell,et al.  Application of optical trapping to beam manipulation in optofluidics. , 2005, Optics express.

[143]  Xudong Fan,et al.  Surface sensitive microfluidic optomechanical ring resonator sensors , 2014 .

[144]  E. R. Thoen,et al.  Ultra-compact Si-SiO2 microring resonator optical channel dropping filters , 1998, IEEE Photonics Technology Letters.

[145]  T. Krauss,et al.  Integrated monolithic optical manipulation. , 2006, Lab on a chip.

[146]  Lauren M. Otto,et al.  Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays , 2014, Nano letters.

[147]  R. Osellame,et al.  Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. , 2010, Optics express.

[148]  A. E. Cetin,et al.  Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view , 2014, Scientific Reports.

[149]  Erik C Jensen,et al.  Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control. , 2012, Analytical chemistry.

[150]  Demetri Psaltis,et al.  Design and cost considerations for practical solar-hydrogen generators , 2014 .

[151]  Xudong Fan,et al.  Polymer-coated micro-optofluidic ring resonator detector for a comprehensive two-dimensional gas chromatographic microsystem: μGC ×μGC-μOFRR. , 2016, The Analyst.

[152]  H. Franke,et al.  Physical characterization of lightguide capillary cells , 1999 .

[153]  Ian M. White,et al.  Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis , 2012 .

[154]  M. A. Stott,et al.  Optofluidic wavelength division multiplexing for single-virus detection , 2015, Proceedings of the National Academy of Sciences.

[155]  J. Fédéli,et al.  Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces. , 2007, Optics express.

[156]  Demetri Psaltis,et al.  Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip. , 2006, Lab on a chip.