Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition

Burkholderia cenocepacia is an opportunistic bacterial pathogen that poses a significant threat to individuals with cystic fibrosis by provoking a strong inflammatory response within the lung. It possesses a type VI secretion system (T6SS), a secretory apparatus that can perforate the cellular membrane of other bacterial species and/or eukaryotic targets, to deliver an arsenal of effector proteins. The B. cenocepacia T6SS (T6SS‐1) has been shown to be implicated in virulence in rats and contributes toward actin rearrangements and inflammasome activation in B. cenocepacia‐infected macrophages. Here, we present bioinformatics evidence to suggest that T6SS‐1 is the archetype T6SS in the Burkholderia genus. We show that B. cenocepacia T6SS‐1 is active under normal laboratory growth conditions and displays antibacterial activity against other Gram‐negative bacterial species. Moreover, B. cenocepacia T6SS‐1 is not required for virulence in three eukaryotic infection models. Bioinformatics analysis identified several candidate T6SS‐dependent effectors that may play a role in the antibacterial activity of B. cenocepacia T6SS‐1. We conclude that B. cenocepacia T6SS‐1 plays an important role in bacterial competition for this organism, and probably in all Burkholderia species that possess this system, thereby broadening the range of species that utilize the T6SS for this purpose.

[1]  Mark S. Thomas,et al.  Structural insights into the function of type VI secretion system TssA subunits , 2018, Nature Communications.

[2]  D. Brodersen,et al.  The RES domain toxins of RES‐Xre toxin‐antitoxin modules induce cell stasis by degrading NAD+ , 2018, Molecular microbiology.

[3]  E. Cascales,et al.  Antibacterial Weapons: Targeted Destruction in the Microbiota. , 2018, Trends in microbiology.

[4]  A. Filloux,et al.  TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha , 2018, The Journal of Biological Chemistry.

[5]  H. Kulasekara,et al.  Conditional toxicity and synergy drive diversity among antibacterial effectors , 2018, Nature Microbiology.

[6]  W. Robins,et al.  Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence , 2018, Science.

[7]  M. Basler,et al.  The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. , 2017, Cell reports.

[8]  G. Pessi,et al.  Mutations in Two Paraburkholderia phymatum Type VI Secretion Systems Cause Reduced Fitness in Interbacterial Competition , 2017, Front. Microbiol..

[9]  Mark S. Thomas,et al.  Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species , 2017, Front. Cell. Infect. Microbiol..

[10]  M. Samadpour,et al.  Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov. , 2017, International journal of systematic and evolutionary microbiology.

[11]  Marek Basler,et al.  Using Force to Punch Holes: Mechanics of Contractile Nanomachines. , 2017, Trends in cell biology.

[12]  A. Desmyter,et al.  Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex , 2017, Nature Microbiology.

[13]  Erh-Min Lai,et al.  Type VI Secretion Effectors: Methodologies and Biology , 2017, Front. Cell. Infect. Microbiol..

[14]  A. Meijer,et al.  Macrophages, but not neutrophils, are critical for proliferation of Burkholderia cenocepacia and ensuing host-damaging inflammation , 2017, PLoS pathogens.

[15]  Hong-Yu Ou,et al.  Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS) , 2017, PLoS pathogens.

[16]  A. Filloux,et al.  The Pseudomonas putida T6SS is a plant warden against phytopathogens , 2017, The ISME Journal.

[17]  Mark S. Thomas,et al.  An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia , 2017, Plasmid.

[18]  Nichollas E. Scott,et al.  Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis , 2016, mBio.

[19]  L. Journet,et al.  Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut , 2016, Proceedings of the National Academy of Sciences.

[20]  P. Freemont,et al.  TssA forms a gp6‐like ring attached to the type VI secretion sheath , 2016, The EMBO journal.

[21]  P. Vandamme,et al.  Members of the genus Burkholderia: good and bad guys , 2016, F1000Research.

[22]  She Chen,et al.  A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. , 2016, Cell host & microbe.

[23]  P. Vandamme,et al.  Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers , 2016, Applied Microbiology and Biotechnology.

[24]  C. Cambillau,et al.  Priming and polymerization of a bacterial contractile tail structure , 2016, Nature.

[25]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[26]  M. Valvano,et al.  Quantification of type VI secretion system activity in macrophages infected with Burkholderia cenocepacia. , 2015, Microbiology.

[27]  Marek Basler,et al.  Type VI secretion system: secretion by a contractile nanomachine , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  E. Cascales,et al.  The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization , 2015, PLoS genetics.

[29]  A. Viale,et al.  Differential Role of the T6SS in Acinetobacter baumannii Virulence , 2015, PloS one.

[30]  J. Armitage,et al.  Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly , 2015, Cell reports.

[31]  A. Desmyter,et al.  Biogenesis and structure of a type VI secretion membrane core complex , 2015, Nature.

[32]  S. Coulthurst,et al.  Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein , 2015, Journal of bacteriology.

[33]  Christian Cambillau,et al.  VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. , 2014, Trends in microbiology.

[34]  Alain Filloux,et al.  Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta , 2014, Cell host & microbe.

[35]  Lin Li,et al.  Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome , 2014, Nature.

[36]  Q. Jin,et al.  A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. , 2014, Cell host & microbe.

[37]  D. Goodlett,et al.  Genetically distinct pathways guide effector export through the type VI secretion system , 2014, Molecular microbiology.

[38]  G. Pessi,et al.  Genome Sequence of Burkholderia cenocepacia H111, a Cystic Fibrosis Airway Isolate , 2014, Genome Announcements.

[39]  J. Mekalanos,et al.  A view to a kill: the bacterial type VI secretion system. , 2014, Cell host & microbe.

[40]  Ann M. Hirsch,et al.  Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis , 2014, PloS one.

[41]  J. Mekalanos,et al.  Type 6 Secretion System–Mediated Immunity to Type 4 Secretion System–Mediated Gene Transfer , 2013, Science.

[42]  M. Trost,et al.  Proteomic Identification of Novel Secreted Antibacterial Toxins of the Serratia marcescens Type VI Secretion System* , 2013, Molecular & Cellular Proteomics.

[43]  Emina Torlak,et al.  Applications and extensions of Alloy: past, present and future , 2013, Mathematical Structures in Computer Science.

[44]  Paul A. Wiggins,et al.  Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors , 2013, Nature.

[45]  R. Munson,et al.  Acinetobacter baumannii Utilizes a Type VI Secretion System for Bacterial Competition , 2013, PloS one.

[46]  J. Mekalanos,et al.  Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions , 2013, Cell.

[47]  Eric P. Skaar,et al.  Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter , 2013, PloS one.

[48]  P. Simpson,et al.  The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system , 2012, Molecular microbiology.

[49]  J. Mekalanos,et al.  Type 6 Secretion Dynamics Within and Between Bacterial Cells , 2012, Science.

[50]  J. Engel,et al.  The Second Type VI Secretion System of Pseudomonas aeruginosa Strain PAO1 Is Regulated by Quorum Sensing and Fur and Modulates Internalization in Epithelial Cells* , 2012, The Journal of Biological Chemistry.

[51]  D. Goodlett,et al.  A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. , 2012, Cell host & microbe.

[52]  M. Valvano,et al.  Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia , 2012, The Journal of Immunology.

[53]  M. Valvano,et al.  The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages , 2012, Cellular microbiology.

[54]  S. Grinstein,et al.  Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42 , 2012, Cellular microbiology.

[55]  J. M. Silverman,et al.  Separate inputs modulate phosphorylation‐dependent and ‐independent type VI secretion activation , 2011, Molecular microbiology.

[56]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[57]  Katharina Trunk,et al.  The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors , 2011, Journal of bacteriology.

[58]  Waldemar Vollmer,et al.  Type VI secretion delivers bacteriolytic effectors to target cells , 2011, Nature.

[59]  C. Marsh,et al.  Burkholderia cenocepacia O polysaccharide chain contributes to caspase‐1‐dependent IL‐1β production in macrophages , 2011, Journal of leukocyte biology.

[60]  D. DeShazer,et al.  The Cluster 1 Type VI Secretion System Is a Major Virulence Determinant in Burkholderia pseudomallei , 2011, Infection and Immunity.

[61]  V. Müller,et al.  Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes , 2011, Cellular and Molecular Life Sciences.

[62]  D. Cameron,et al.  Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae , 2010, Proceedings of the National Academy of Sciences.

[63]  Mark S. Thomas,et al.  Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else? , 2010, Virulence.

[64]  S. Pukatzki,et al.  The Vibrio cholerae type VI secretion system displays antimicrobial properties , 2010, Proceedings of the National Academy of Sciences.

[65]  S. McClean,et al.  Macrophage responses to CF pathogens: JNK MAP kinase signaling by Burkholderia cepacia complex lipopolysaccharide. , 2010, FEMS immunology and medical microbiology.

[66]  T. West,et al.  Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions , 2010, PLoS pathogens.

[67]  P. Dřevínek,et al.  Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[68]  D. Goodlett,et al.  A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. , 2010, Cell host & microbe.

[69]  A. Meijer,et al.  Burkholderia cenocepacia Creates an Intramacrophage Replication Niche in Zebrafish Embryos, Followed by Bacterial Dissemination and Establishment of Systemic Infection , 2010, Infection and Immunity.

[70]  L. Eberl,et al.  Identification of Specific and Universal Virulence Factors in Burkholderia cenocepacia Strains by Using Multiple Infection Hosts , 2009, Infection and Immunity.

[71]  Michael G Rossmann,et al.  The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria , 2009, EMBO Journal.

[72]  M. Valvano,et al.  Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia. , 2009, Microbiology.

[73]  J. Mekalanos,et al.  Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. , 2009, Cell host & microbe.

[74]  J. M. Sauder,et al.  Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin , 2009, Proceedings of the National Academy of Sciences.

[75]  M. Valvano,et al.  A Novel Sensor Kinase-Response Regulator Hybrid Controls Biofilm Formation and Type VI Secretion System Activity in Burkholderia cenocepacia , 2008, Infection and Immunity.

[76]  Christopher M. Bailey,et al.  Type VI secretion: a beginner's guide. , 2008, Current opinion in microbiology.

[77]  Jonathan J. Dennis,et al.  Development of Galleria mellonella as an Alternative Infection Model for the Burkholderia cepacia Complex , 2008, Infection and Immunity.

[78]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[79]  Andrew T. Revel,et al.  Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin , 2007, Proceedings of the National Academy of Sciences.

[80]  Mark S. Thomas,et al.  In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. , 2007, Microbiology.

[81]  G. von Heijne,et al.  Membrane protein structure: prediction versus reality. , 2007, Annual review of biochemistry.

[82]  J. Mrázek,et al.  Type VI secretion is a major virulence determinant in Burkholderia mallei , 2007, Molecular microbiology.

[83]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[84]  W. Nelson,et al.  Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[85]  M. Valvano,et al.  Identification of Burkholderia cenocepacia Genes Required for Bacterial Survival In Vivo , 2004, Infection and Immunity.

[86]  P. Sokol,et al.  The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. , 2003, Microbiology.

[87]  C. Corbett,et al.  An extracellular zinc metalloprotease gene of Burkholderia cepacia. , 2003, Microbiology.

[88]  J. Burns,et al.  Correlation between an In Vitro Invasion Assay and a Murine Model of Burkholderia cepacia Lung Infection , 2002, Infection and Immunity.

[89]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[90]  L. Eberl,et al.  Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis. , 2000, FEMS microbiology letters.

[91]  C. Mohr,et al.  Invasion and Intracellular Survival ofBurkholderia cepacia , 2000, Infection and Immunity.

[92]  E. Chi,et al.  Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia , 1996, Infection and immunity.

[93]  J. Oelze,et al.  Identification of a new class of nitrogen fixation genes in Rhodobacter capsalatus: a putative membrane complex involved in electron transport to nitrogenase , 1993, Molecular and General Genetics MGG.

[94]  V. de Lorenzo,et al.  Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria , 1990, Journal of bacteriology.

[95]  B. Iglewski,et al.  A More Sensitive Plate Assay for Detection of Protease Production by Pseudomonas aeruginosa , 1979, Journal of clinical microbiology.

[96]  J. O. Irwin,et al.  The estimation of the bactericidal power of the blood , 1938, Epidemiology and Infection.

[97]  A. Vergunst,et al.  Zebrafish embryos as a model to study bacterial virulence. , 2014, Methods in molecular biology.

[98]  F. Potthast,et al.  Towards the proteome of Burkholderia cenocepacia H111: Setting up a 2‐DE reference map , 2006, Proteomics.

[99]  V. de Lorenzo,et al.  Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. , 1994, Methods in enzymology.