Stereo Matching - State-of-the-Art and Research Challenges

Stereo matching denotes the problem of finding dense correspondences in pairs of images in order to perform 3D reconstruction. In this chapter, we provide a review of stereo methods with a focus on recent developments and our own work. We start with a discussion of local methods and introduce our algorithms: geodesic stereo, cost filtering and PatchMatch stereo. Although local algorithms have recently become very popular, they are not capable of handling large untextured regions where a global smoothness prior is required. In the discussion of such global methods, we briefly describe standard optimization techniques. However, the real problem is not in the optimization, but in finding an energy function that represents a good model of the stereo problem. In this context, we investigate data and smoothness terms of standard energies to find the best-suited implementations of which. We then describe our own work on finding a good model. This includes our combined stereo and matting approach, Surface Stereo, Object Stereo as well as a new method that incorporates physics-based reasoning in stereo matching.

[1]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, International Journal of Computer Vision.

[2]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Gauthier Lafruit,et al.  Cross-Based Local Stereo Matching Using Orthogonal Integral Images , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  D. Nistér,et al.  Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Hailin Jin,et al.  Stereo matching with nonparametric smoothness priors in feature space , 2009, CVPR.

[6]  Uwe Franke,et al.  Improving sub-pixel accuracy for long range stereo , 2012, Comput. Vis. Image Underst..

[7]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Jonathan M. Garibaldi,et al.  Real-Time Correlation-Based Stereo Vision with Reduced Border Errors , 2002, International Journal of Computer Vision.

[9]  Cristian Sminchisescu,et al.  Object Recognition by Sequential Figure-Ground Ranking , 2011, International Journal of Computer Vision.

[10]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[11]  Xing Mei,et al.  On building an accurate stereo matching system on graphics hardware , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[12]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Aaron F. Bobick,et al.  Large Occlusion Stereo , 1999, International Journal of Computer Vision.

[14]  Carsten Rother,et al.  PatchMatch Stereo - Stereo Matching with Slanted Support Windows , 2011, BMVC.

[15]  Rudy Lauwereins,et al.  Joint integral histograms and its application in stereo matching , 2010, 2010 IEEE International Conference on Image Processing.

[16]  Margrit Gelautz,et al.  Local stereo matching using geodesic support weights , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[17]  Carsten Rother,et al.  Fast Cost-Volume Filtering for Visual Correspondence and Beyond , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Carlo Tomasi,et al.  Surfaces with occlusions from layered stereo , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Wei Xiong,et al.  Stereo Matching on Objects with Fractional Boundary , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[21]  Jan-Michael Frahm,et al.  Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Carsten Rother,et al.  A stereo approach that handles the matting problem via image warping , 2009, CVPR.

[23]  Ian Reid,et al.  Global stereo reconstruction under second order smoothness priors , 2008, CVPR.

[24]  Yi Deng,et al.  A symmetric patch-based correspondence model for occlusion handling , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[25]  Carlo Tomasi,et al.  A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Hai Tao,et al.  A global matching framework for stereo computation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[27]  Margrit Gelautz,et al.  A layered stereo matching algorithm using image segmentation and global visibility constraints , 2005 .

[28]  Heiko Hirschmüller,et al.  Evaluation of Stereo Matching Costs on Images with Radiometric Differences , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[30]  Richard Szeliski,et al.  A layered approach to stereo reconstruction , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[31]  Kuk-Jin Yoon,et al.  Locally adaptive support-weight approach for visual correspondence search , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[33]  Laurent Moll,et al.  Real time correlation-based stereo: algorithm, implementations and applications , 1993 .

[34]  Margrit Gelautz,et al.  Temporally Consistent Disparity and Optical Flow via Efficient Spatio-temporal Filtering , 2011, PSIVT.

[35]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[37]  Yuichi Taguchi,et al.  Stereo reconstruction with mixed pixels using adaptive over-segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[39]  Olga Veksler,et al.  Stereo correspondence by dynamic programming on a tree , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[40]  Emanuele Trucco,et al.  Efficient stereo with multiple windowing , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  Adam Finkelstein,et al.  PatchMatch: a randomized correspondence algorithm for structural image editing , 2009, SIGGRAPH 2009.

[42]  Richard Szeliski,et al.  Building Rome in a day , 2009, ICCV.

[43]  Miao Liao,et al.  Real-time Global Stereo Matching Using Hierarchical Belief Propagation , 2006, BMVC.

[44]  Pushmeet Kohli,et al.  P3 & Beyond: Solving Energies with Higher Order Cliques , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[46]  Margrit Gelautz,et al.  Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions , 2007, Signal Process. Image Commun..

[47]  Hang-Bong Kang,et al.  Constant Time Stereo Matching , 2009, 2009 13th International Machine Vision and Image Processing Conference.

[48]  Carlo Tomasi,et al.  Depth Discontinuities by Pixel-to-Pixel Stereo , 1999, International Journal of Computer Vision.

[49]  Jian Sun,et al.  Guided Image Filtering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Neil A. Dodgson,et al.  Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral Grid , 2010, ECCV.

[51]  Margrit Gelautz,et al.  Simple but Effective Tree Structures for Dynamic Programming-Based Stereo Matching , 2008, VISAPP.

[52]  Olga Veksler,et al.  Stereo Correspondence with Compact Windows via Minimum Ratio Cycle , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Jeff A. Bilmes,et al.  Submodularity beyond submodular energies: Coupling edges in graph cuts , 2011, CVPR 2011.

[54]  Alexei A. Efros,et al.  Blocks World Revisited: Image Understanding Using Qualitative Geometry and Mechanics , 2010, ECCV.

[55]  Reinhard Männer,et al.  Calculating Dense Disparity Maps from Color Stereo Images, an Efficient Implementation , 2004, International Journal of Computer Vision.

[56]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[57]  Minglun Gong,et al.  Local stereo matching with 3D adaptive cost aggregation for slanted surface modeling and sub-pixel accuracy , 2008, 2008 19th International Conference on Pattern Recognition.

[58]  Martin J. Wainwright,et al.  Tree-reweighted belief propagation algorithms and approximate ML estimation by pseudo-moment matching , 2003, AISTATS.

[59]  Philip H. S. Torr,et al.  Solving Energies with Higher Order Cliques , 2007 .

[60]  Richard Szeliski,et al.  Stereo Matching with Transparency and Matting , 1999, International Journal of Computer Vision.

[61]  Richard Szeliski,et al.  High-quality video view interpolation using a layered representation , 2004, SIGGRAPH 2004.

[62]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[63]  Carsten Rother,et al.  Extracting 3D Scene-Consistent Object Proposals and Depth from Stereo Images , 2012, ECCV.

[64]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[65]  William T. Freeman,et al.  Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[66]  Pushmeet Kohli,et al.  Surface stereo with soft segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[67]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[68]  Vladimir Kolmogorov,et al.  Minimizing Nonsubmodular Functions with Graph Cuts-A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Steven W. Zucker,et al.  Surface Geometric Constraints for Stereo in Belief Propagation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[70]  Andrew Blake,et al.  LogCut - Efficient Graph Cut Optimization for Markov Random Fields , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[71]  Yair Weiss,et al.  Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[72]  Ruigang Yang,et al.  Spatial-Depth Super Resolution for Range Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  Pushmeet Kohli,et al.  Object stereo — Joint stereo matching and object segmentation , 2011, CVPR 2011.

[74]  Uwe Franke,et al.  Improving Stereo Sub-Pixel Accuracy for Long Range Stereo , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[75]  Pascal Fua,et al.  Combining Stereo and Monocular Information to Compute Dense Depth Maps that Preserve Depth Discontinuities , 1991, IJCAI.

[76]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  Richard Szeliski,et al.  Boundary Matting for View Synthesis , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[78]  Y. Aloimonos,et al.  Stereo correspondence with slanted surfaces: critical implications of horizontal slant , 2004, CVPR 2004.

[79]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[80]  Vladimir Kolmogorov,et al.  "GrabCut": interactive foreground extraction using iterated graph cuts , 2004, ACM Trans. Graph..

[81]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[82]  L. Hong,et al.  Segment-based stereo matching using graph cuts , 2004, CVPR 2004.

[83]  Toby Sharp,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR.

[84]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[85]  Daniel P. Huttenlocher,et al.  Efficient Belief Propagation for Early Vision , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[86]  H. Ishikawa Global Optimization Using Embedded Graphs , 2000 .

[87]  Pushmeet Kohli,et al.  Minimizing sparse higher order energy functions of discrete variables , 2009, CVPR.

[88]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).