Generic controllability properties for the bilinear Schrödinger equation
暂无分享,去创建一个
Mario Sigalotti | Thomas Chambrion | Paolo Mason | Ugo V. Boscain | U. Boscain | P. Mason | M. Sigalotti | T. Chambrion
[1] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[2] Grégoire Allaire,et al. Homogenization of periodic non self-adjoint problems with large drift and potential , 2007 .
[3] Vahagn Nersesyan,et al. Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.
[4] Robert Carlson. Genericity of simple eigenvalues , 1979 .
[5] Antoine Henrot,et al. Variation et optimisation de formes : une analyse géométrique , 2005 .
[6] M. Slemrod,et al. Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[7] Mikhail Teytel,et al. How rare are multiple eigenvalues , 1999 .
[8] K. Friedrichs,et al. Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .
[9] Mario Sigalotti,et al. Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.
[10] Claude Le Bris,et al. Mathematical models and methods for ab initio quantum chemistry , 2000 .
[11] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[12] Sylvain Ervedoza,et al. Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .
[13] Riccardo Adami,et al. Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005 .
[14] Domenico D'Alessandro,et al. Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..
[15] U. Boscain,et al. Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[16] Karine Beauchard,et al. Controllability of a quantum particle in a moving potential well , 2006 .
[17] Gabriel Turinici,et al. On the controllability of bilinear quantum systems , 2000 .
[18] Roger W. Brockett,et al. The Controllability of Infinite Quantum Systems and Closed Subspace Criteria , 2006 .
[19] Manfred Requardt,et al. PERTURBATION THEORY OF SCHRODINGER OPERATORS IN INFINITELY MANY COUPLING PARAMETERS , 1999 .
[20] N. Khaneja,et al. Characterization of the Positivity of the Density Matrix in Terms of the Coherence Vector Representation , 2003, quant-ph/0302024.
[21] C. Altafini,et al. QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.
[22] Mario Sigalotti,et al. The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent , 2008 .
[23] Tosio Kato. Perturbation theory for linear operators , 1966 .
[24] Mazyar Mirrahimi,et al. Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.
[25] Karine Beauchard,et al. Local controllability of a 1-D Schrödinger equation , 2005 .
[26] S. S. Rodrigues. Navier-Stokes Equation on the Rectangle: Controllability by Means of Low Mode Forcing , 2006 .
[27] Andrey A. Agrachev,et al. Controllability of 2D Euler and Navier-Stokes Equations by Degenerate Forcing , 2005 .
[28] Marion Kee,et al. Analysis , 2004, Machine Translation.
[29] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[30] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[31] J. H. Albert,et al. Genericity of simple eigenvalues for elliptic PDE’s , 1975 .
[32] B. Simon,et al. Schrödinger Semigroups , 2007 .
[33] Karine Beauchard,et al. Spectral controllability for 2D and 3D linear Schrödinger equations , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[34] K. Friedrichs,et al. Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .
[35] Mazyar Mirrahimi,et al. Controllability of quantum harmonic oscillators , 2004, IEEE Transactions on Automatic Control.
[36] Karen K. Uhlenbeck. Generic Properties of Eigenfunctions , 1976 .
[37] Shmuel Agmon,et al. Bounds on exponential decay of eigenfunctions of Schrödinger operators , 1985 .
[38] Mazyar Mirrahimi,et al. Practical Stabilization of a Quantum Particle in a One-Dimensional Infinite Square Potential Well , 2009, SIAM J. Control. Optim..
[39] Franz Rellich,et al. Perturbation Theory of Eigenvalue Problems , 1969 .
[40] Anna Maria Micheletti. Metrica per famiglie di domini limitati e proprietà generiche degli autovalori , 1972 .
[41] P. H. Müller,et al. T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .
[42] P. Anselone,et al. Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .
[43] Anna Maria Micheletti. Perturbazione dello spettro dell'operatore di Laplace, in relazione ad una variazione del campo , 1972 .
[44] V. Nersesyan. Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.