PetRBF--A parallel O(N) algorithm for radial basis function interpolation

Abstract We have developed a parallel algorithm for radial basis function ( rbf ) interpolation that exhibits O ( N ) complexity, requires O ( N ) storage, and scales excellently up to a thousand processes. The algorithm uses a gmres iterative solver with a restricted additive Schwarz method ( rasm ) as a preconditioner and a fast matrix-vector algorithm. Previous fast rbf methods — achieving at most O ( N log N ) complexity — were developed using multiquadric and polyharmonic basis functions. In contrast, the present method uses Gaussians with a small variance with respect to the domain, but with sufficient overlap. This is a common choice in particle methods for fluid simulation, our main target application. The fast decay of the Gaussian basis function allows rapid convergence of the iterative solver even when the subdomains in the rasm are very small. At the same time we show that the accuracy of the interpolation can achieve machine precision. The present method was implemented in parallel using the pets c library (developer version). Numerical experiments demonstrate its capability in problems of rbf interpolation with more than 50 million data points, timing at 106 s (19 iterations for an error tolerance of 10 − 15 ) on 1024 processors of a Blue Gene/L (700 MHz PowerPC processors). The parallel code is freely available in the open-source model.

[1]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[2]  Richard K. Beatson,et al.  Surface interpolation with radial basis functions for medical imaging , 1997, IEEE Transactions on Medical Imaging.

[3]  M. Buhmann Radial functions on compact support , 1998 .

[4]  E. J. Kansa,et al.  Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme , 1999 .

[5]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[6]  M. J. D. Powell Truncated Laurent expansions for the fast evaluation of thin plate splines , 2005, Numerical Algorithms.

[7]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[8]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[9]  Richard K. Beatson,et al.  Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration , 1999, Adv. Comput. Math..

[10]  Leevan Ling,et al.  Preconditioning for radial basis functions with domain decomposition methods , 2004, Math. Comput. Model..

[11]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[12]  Richard K. Beatson,et al.  Fast Evaluation of Radial Basis Functions: Methods for Generalized Multiquadrics in Rn , 2001, SIAM J. Sci. Comput..

[13]  W. Chen,et al.  New RBF collocation methods and kernel RBF with applications , 2001, ArXiv.

[14]  M. Gander,et al.  Why Restricted Additive Schwarz Converges Faster than Additive Schwarz , 2003 .

[15]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[16]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[17]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[18]  Jichun Li,et al.  Radial basis function method for 1-D and 2-D groundwater contaminant transport modeling , 2003 .

[19]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[20]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[21]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[22]  Y. Hon,et al.  Domain decomposition for radial basis meshless methods , 2004 .

[23]  E. Kansa,et al.  Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .

[24]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[25]  Shinnosuke Obi,et al.  Calculation of isotropic turbulence using a pure Lagrangian vortex method , 2007, J. Comput. Phys..

[26]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[27]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[28]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[29]  Lorena A. Barba,et al.  Emergence and evolution of tripole vortices from net-circulation initial conditions , 2007 .

[30]  Stephen Billings,et al.  Interpolation of geophysical data using continuous global surfaces , 2002 .

[31]  Lorena A. Barba Computing high-Reynolds number vortical flows: A highly accurate method with a fully meshless formulation , 1996 .

[32]  Lorena A. Barba,et al.  Global field interpolation for particle methods , 2010, J. Comput. Phys..

[33]  C. S. Chen,et al.  A mesh free approach using radial basis functions and parallel domain decomposition for solving three‐dimensional diffusion equations , 2004 .

[34]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[35]  A. Leonard Vortex methods for flow simulation , 1980 .

[36]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[37]  George Roussos,et al.  Rapid evaluation of radial basis functions , 2005 .

[38]  M. Powell,et al.  A Krylov subspace algorithm for multiquadric interpolation in many dimensions , 2005 .

[39]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[40]  Ramani Duraiswami,et al.  Fast Multipole Method for the Biharmonic Equation , 2005 .

[41]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[42]  R. Beatson,et al.  Fast evaluation of radial basis functions: I , 1992 .

[43]  Nam Mai-Duy,et al.  Indirect RBFN method with thin plate splines for numerical solution of differential equations , 2003 .

[44]  L. Barba,et al.  Advances in viscous vortex methods—meshless spatial adaption based on radial basis function interpolation , 2005 .

[45]  K. BeatsonR.,et al.  Fast Evaluation of Radial Basis Functions , 1998 .

[46]  Ramani Duraiswami,et al.  Fast Radial Basis Function Interpolation via Preconditioned Krylov Iteration , 2007, SIAM J. Sci. Comput..

[47]  Leevan Ling,et al.  A least-squares preconditioner for radial basis functions collocation methods , 2005, Adv. Comput. Math..

[48]  Lorena A. Barba,et al.  Fast radial basis function interpolation with Gaussians by localization and iteration , 2009, J. Comput. Phys..

[49]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[50]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .